Matemática, perguntado por isamarcella, 1 ano atrás

gente me ajuda por favor preciso disso para AMANHÃ a²b-b


ValeriaCardoso88: quais sao os valores
ValeriaCardoso88: n tem nenhum número não?
artb123: TEM VOU LHE ENVIAR
artb123: Simplificando a expressão:
(a²b+ab²) (1/a ³ - 1/b ³) / (1/a² - 1/b²)

com b diferente de 0 ; a diferente de 0 ; a diferente de +/ - b

obtemos : a² + ab + b²
artb123: ESSA É A QUESTAO

Soluções para a tarefa

Respondido por artb123
4
(a²b + ab²) (1/a³ - 1/b³) = 
= a²b/a³ - a²b/b³ + ab²/a³ - ab²/b³ = 
= b/a - a²/b² + b²/a² - a/b 

Resolvendo agora a segunda parte … 
(1/a² - 1/b²) = 
= b²/ b²a² - a²/ b²a² = 
= (b² - a²) / b²a² 

Tendo em conta que dividir por um número é o mesmo que multiplicar pelo seu inverso, podemos agora simplificar a expressão total da seguinte maneira: 
(b/a - a²/b² + b²/a² - a/b) * b²a² / (b² - a²) = 
= b³a² / a(b² - a²) - b²(a^4) / b²(b² - a²) + (b^4) a² / a²(b² - a²) - b²a³ / b(b² - a²) = 
= b³a / (b² - a²) - (a^4) / (b² - a²) + (b^4) / (b² - a²) - ba³ / (b² - a²) = 
= [b³a - (a^4) + (b^4) - ba³] / (b² - a²) = 
= [(b^4) + b³a - ba³ - (a^4)] / (b² - a²) = 
= [b³(b+a) - a³(b+a)] / (b+a)(b-a) = 
= (b³ - a³) / (b - a) = 
= (b³ + a²b - a²b - a³ + ab² - ab²) / (b - a) = 
= (a²b + b³ + ab² - a³ - ab² - a²b) / (b - a) = 
= [ b(a² + b² + ab) - a(a² + b² + ab) ] / (b - a) = 
= (b - a) (a² + b² + ab) / (b - a) = 
= a² + b² + ab 

Tentei resolver o exercício da forma mais simples possível, mas estava mesmo complicado! 
Pergunta excelente, e boa sorte para compreender a resolução... Sugiro primeiro passá.la para o papel e só então observá-la. 

Um abraço!

Perguntas interessantes