⚠️Gente alguém me ajuda pfvr?? calcular as primitivas a seguir:
obs: aplique a regra de integração por partes
Soluções para a tarefa
Resposta:
a) ∫ (x+1) cos(2x) dx
u=x+1 ==>du=dx
dv = cos(2x) dx ==> ∫dv = ∫cos(2x) dx ==>v=(1/2) * sen(2x)
∫ (x+1) cos(2x) dx = (x+1)/2 * sen(2x) -(1/2)* ∫ sen (2x) dx
∫ (x+1) cos(2x) dx = (x+1)/2 * sen(2x) -(1/2)* ((-1/2) * cos(2x) ) + c
∫ (x+1) cos(2x) dx = (x+1)/2 * sen(2x) +(1/4)* cos(2x) + c
b) ∫e^(2x) * sen(x) dx
u=sen(x) ==>du=cos(x) dx
dv = e^(2x) dx ==> v=∫ e^(2x) dx ==> v = (1/2) *e^(2x)
∫e^(2x) * sen(x) dx =(sen(x))/2 * e^(2x) - (1/2)* ∫ e^(2x) cos(x) dx
______________________________________________
Resolvendo ∫ e^(2x) cos(x) dx
u=cos(x) ==>du=-sen(x) dx
dv=e^(2x) dx ==>v=∫ e^(2x) dx ==> v = (1/2) *e^(2x)
∫ e^(2x) cos(x) dx =(cos(x))/2 *e^(2x) + (1/2) ∫ e^(2x) *sen(x) dx
_____________________________________________
∫e^(2x) * sen(x) dx =(sen(x))/2 * e^(2x) - (1/2)* [ (cos(x))/2 *e^(2x) + (1/2) ∫ e^(2x) *sen(x) dx]
∫e^(2x) * sen(x) dx =(sen(x))/2 * e^(2x) - [ (cos(x))/4 *e^(2x) + (1/4) ∫ e^(2x) *sen(x) dx]
∫e^(2x) * sen(x) dx =(sen(x))/2 * e^(2x) - (cos(x))/4 *e^(2x) - (1/4) ∫ e^(2x) *sen(x) dx
∫e^(2x) * sen(x) dx +1/4 ∫ e^(2x) *sen(x) dx = (sen(x))/2 * e^(2x) - (cos(x))/4 *e^(2x)
(5/4)* ∫e^(2x) * sen(x) dx = (sen(x))/2 * e^(2x) - (cos(x))/4 *e^(2x)
∫e^(2x) * sen(x) dx =(4/5) [ (sen(x))/2 * e^(2x) - (cos(x))/4 *e^(2x)] + c