Galera, me ajudem a derivar parcialmente em relação a x isso aqui por favor!!

Onde c é constante positiva
Pfvr galera tenho muita dificuldade em cvv, quem souber da um help aqui :)
Soluções para a tarefa
Respondido por
0
Vamos derivar parcialmente, lembrando que:

Então:
![F=\dfrac{c\pi x^2}{4}\sqrt{y-z}\\\\
\dfrac{\partial F}{\partial x}=\dfrac{\partial}{\partial x}\left(\dfrac{c\pi x^2}{4}\sqrt{y-z}\right)\\\\
\dfrac{\partial F}{\partial x}=\dfrac{c\pi}{4}\cdot \dfrac{\partial}{\partial x}\left(x^2\cdot\sqrt{y-z}\right)\\\\
\dfrac{\partial F}{\partial x}=\dfrac{c\pi}{4}\cdot \left[\dfrac{\partial}{\partial x}(x^2)\cdot\sqrt{y-z}+x^2\cdot\dfrac{\partial}{\partial x}(\sqrt{y-z})\right] F=\dfrac{c\pi x^2}{4}\sqrt{y-z}\\\\
\dfrac{\partial F}{\partial x}=\dfrac{\partial}{\partial x}\left(\dfrac{c\pi x^2}{4}\sqrt{y-z}\right)\\\\
\dfrac{\partial F}{\partial x}=\dfrac{c\pi}{4}\cdot \dfrac{\partial}{\partial x}\left(x^2\cdot\sqrt{y-z}\right)\\\\
\dfrac{\partial F}{\partial x}=\dfrac{c\pi}{4}\cdot \left[\dfrac{\partial}{\partial x}(x^2)\cdot\sqrt{y-z}+x^2\cdot\dfrac{\partial}{\partial x}(\sqrt{y-z})\right]](https://tex.z-dn.net/?f=F%3D%5Cdfrac%7Bc%5Cpi+x%5E2%7D%7B4%7D%5Csqrt%7By-z%7D%5C%5C%5C%5C%0A%5Cdfrac%7B%5Cpartial+F%7D%7B%5Cpartial+x%7D%3D%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial+x%7D%5Cleft%28%5Cdfrac%7Bc%5Cpi+x%5E2%7D%7B4%7D%5Csqrt%7By-z%7D%5Cright%29%5C%5C%5C%5C%0A%5Cdfrac%7B%5Cpartial+F%7D%7B%5Cpartial+x%7D%3D%5Cdfrac%7Bc%5Cpi%7D%7B4%7D%5Ccdot+%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial+x%7D%5Cleft%28x%5E2%5Ccdot%5Csqrt%7By-z%7D%5Cright%29%5C%5C%5C%5C%0A%5Cdfrac%7B%5Cpartial+F%7D%7B%5Cpartial+x%7D%3D%5Cdfrac%7Bc%5Cpi%7D%7B4%7D%5Ccdot+%5Cleft%5B%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial+x%7D%28x%5E2%29%5Ccdot%5Csqrt%7By-z%7D%2Bx%5E2%5Ccdot%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial+x%7D%28%5Csqrt%7By-z%7D%29%5Cright%5D)
![\dfrac{\partial F}{\partial x}=\dfrac{c\pi}{4}\cdot [2x\cdot\sqrt{y-z}+x^2\cdot0]\\\\
\dfrac{\partial F}{\partial x}=\dfrac{c\pi}{4}\cdot [2x\cdot\sqrt{y-z}]\\\\
\boxed{\dfrac{\partial F}{\partial x}=\dfrac{c\pi x}{2}\sqrt{y-z}} \dfrac{\partial F}{\partial x}=\dfrac{c\pi}{4}\cdot [2x\cdot\sqrt{y-z}+x^2\cdot0]\\\\
\dfrac{\partial F}{\partial x}=\dfrac{c\pi}{4}\cdot [2x\cdot\sqrt{y-z}]\\\\
\boxed{\dfrac{\partial F}{\partial x}=\dfrac{c\pi x}{2}\sqrt{y-z}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial+F%7D%7B%5Cpartial+x%7D%3D%5Cdfrac%7Bc%5Cpi%7D%7B4%7D%5Ccdot+%5B2x%5Ccdot%5Csqrt%7By-z%7D%2Bx%5E2%5Ccdot0%5D%5C%5C%5C%5C%0A%5Cdfrac%7B%5Cpartial+F%7D%7B%5Cpartial+x%7D%3D%5Cdfrac%7Bc%5Cpi%7D%7B4%7D%5Ccdot+%5B2x%5Ccdot%5Csqrt%7By-z%7D%5D%5C%5C%5C%5C%0A%5Cboxed%7B%5Cdfrac%7B%5Cpartial+F%7D%7B%5Cpartial+x%7D%3D%5Cdfrac%7Bc%5Cpi+x%7D%7B2%7D%5Csqrt%7By-z%7D%7D)
Então:
Perguntas interessantes
Português,
1 ano atrás
História,
1 ano atrás
Sociologia,
1 ano atrás
Química,
1 ano atrás
Matemática,
1 ano atrás