(G1 - Ifpe 2020) Uma casa foi projetada em formato retangular com as seguintes medidas: 10 m de comprimento por 20 m de largura. O proprietário pediu que a área da casa fosse aumentada em 25 m². Jorge, brilhante arquiteto, decidiu diminuir x metros na largura e aumentar x metros no comprimento, de modo a não alterar o perimetro, mas satisfazer o dono da casa Nessa situação, qual o valor de x?
a) 6,0 m
b) 4,5 m
c) 3,5 m
d) 5,5 m
e) 5,0 m
Soluções para a tarefa
Resposta:
Explicação passo-a-passo:
1) O proprietário pediu que a área da casa (retangular) seja aumentada em 25m². Então, calculamos a área da casa e adicionamos o aumento pedido:
L= 20 C= 10
A= L . C --> A= 20 . 10 = 200m²
200 + 25 = 225m²
2) O arquiteto resolveu aumentar o comprimento em x e diminuir a largura em x, sem alterar o perímetro e manter a área final (225m²). Dessa forma temos:
L= 20 - x C= 10 + x
L.C = A
(20-x).(10+x) = 225m²
3) Realizando a distributiva temos a seguinte equação:
200 + 20x - 10x - x² = 225
200 + 10x - x² = 225
200 - 225 + 10x - x² = 0
-x² + 10x - 25 = 0 . (-1)
x² - 10x - 25 = 0
4) Por fim, resolvemos a equação de segundo grau:
x² - 10x - 25 = 0
Δ= (-10)² - 4 . 1 . (-25)
Δ= 100 - 100
Δ= 0 --> Raiz= 0
x= - (-10) ± 0/ 2.1
x¹ = x² = 5m
Resposta: letra e
Resposta:
letra e
Explicação passo-a-passo: