(FUVEST-SP) Um automóvel executa uma
volta completa em uma pista circular, em dois
minutos,
mantendo constante a indicação do velocímetro.
Em um dos pontos da trajetória, a aceleração
vetorial do automóvel te módulo igual a 4m/s2. O
raio da pista é:
a) zero
b) 500m
c) 1.000m
d) 1.500m
e) 3.000m
Soluções para a tarefa
Respondido por
6
Resposta: D) 1500 m
Explicação:
v = d÷t
d = distância percorrida em 2pi.
2pi ------------- 2pi×r metros
2pi ---------- d
d = 2pi×r metros
Assim:
v = 2pi×r÷t
t = 2 minutos = 120 segundos
v = 2pi×r÷120
v = pi×r÷60
Avetorial = v^2÷r
4 = (pi×r÷60)^2÷r
4r= pi^2×r^2÷3600
4r×3600 = pi^2×r^2
14400×r= pi^2×r^2
r^2÷r = 14400÷pi^2
r = 14400÷pi^2
Considerando pi = 3,14 temos:
r = 14400÷3,14^2
r = 14400÷9,8596
r = 1460 metros
Entre as alternativas a que mais se aproxima do valor correto é a D.
pedrohen550:
obg d+
Respondido por
0
Resposta:
Explicação:
á uma fórmula que afirma que a aceleração centrípeta é igual o produto do quadrado da velocidade angular, com o raio.
r = raio
v = velocidade angular
Ac = aceleração centrípeta
Ac = v^2 * r
Ac =[ 2*phi / 120 s ]^2 * r
Ac*[120 / 2*phi]^2 = r
r ~ 1500m
Perguntas interessantes
Matemática,
8 meses atrás
Ed. Física,
8 meses atrás
História,
8 meses atrás
Ed. Física,
11 meses atrás
Biologia,
11 meses atrás
Matemática,
1 ano atrás