Matemática, perguntado por joaovitorcarro, 1 ano atrás

Função logarítmica
  log_{8}  \: \sqrt[]{3} 2  = y

Soluções para a tarefa

Respondido por Zadie
1


 log_{8}( \sqrt{32} )  = y \\  {8}^{y}  =  \sqrt{32}  \\  {8}^{y}  =  {32}^{ \frac{1}{2} }  \\   {8}^{y} =   {( {2}^{5} )}^{ \frac{1}{2} }  \\   {( {2}^{3}) }^{y}  =  {2}^{ \frac{5}{2} }  \\  {2}^{3y}  =  {2}^{ \frac{5}{2} }  \\  \\ 3y =  \frac{5}{2}  \\ y =  \frac{5}{2}  \times  \frac{1}{3}  \\ y =  \frac{5}{6}


Logo, y = 5/6.
Respondido por marcelorjordaopaxevl
1

 log_8({\sqrt{32}})\\<br /><br /> =log_8{(32^{\frac{1}{2}})  \\<br /><br /> = \dfrac{1}{2}$  \times log_8({32}) \\<br /><br /> =\dfrac{1}{2}$ \times log_8({2^{5}}) \\ <br /><br /> =\dfrac{1}{2}$ \times 5 \times log_8({2}) \\<br /><br />=\dfrac{1}{2}$ \times 5 \times (\dfrac{1}{3}) \\<br /><br />=\dfrac{5}{6}$<br /><br />

dessa forma

 log_8({\sqrt{32}}) = \dfrac{5}{6}\\<br />y = \dfrac{5}{6}

Perguntas interessantes