Matemática, perguntado por LucasBrandack, 1 ano atrás

função exponenciais :

2.3^x + 5.3^x-1 =4.3^x+1 -75

Soluções para a tarefa

Respondido por Luanferrao
1
Falando que 3^x = y, temos que:

2.3^x + 5.3^(x-1) = 4.3^(x+1)-75

2.3^x + 5.3^x.3^(-1) = 4.3^x.3^1 - 75

2y + 5y/3 = 12y - 75

2y+5y/3-12y = -75

(6y+5y-36y)/3 = -75

-25y = -75*3

y = -75*3 / -25

y = 3*3

y = 9

Voltando:

3^x = y

3^x = 9
3^x = 3^2

x = 2
Respondido por korvo
1
Ae Lucas,

as mesmas propriedades da exponenciação já utilizadas:

\mathsf{1^a\Rightarrow a^{m+n}=a^m\cdot a^n}\\\\
\mathsf{2^a \Rightarrow a^{-m} =\dfrac{1}{a^m} }

..............................

\mathsf{2\cdot3^x+5\cdot3^{x-1}=4\cdot3^{x+1}-75}\\
\mathsf{2\cdot3^x+5\cdot3^x\cdot3^{-1}=4\cdot3^x\cdot3^1-75}\\\\
\mathsf{2\cdot3^x+5\cdot3^x\cdot \dfrac{1}{3^1}=4\cdot3^x\cdot3-75 }\\\\
\mathsf{2\cdot3^x+5\cdot \dfrac{1}{3}\cdot3^x=4\cdot3\cdot3^x-75 }\\\\
\mathsf{2\cdot3^x+ \dfrac{5}{3}\cdot3^x=12\cdot3^x-75 }\\\\
\mathsf{2\cdot3^x+ \dfrac{5}{3}\cdot3^x-12\cdot3^x=-75 }\\\\
\mathsf{3^x~em~evidencia:}

\mathsf{3^x\cdot\left(2+ \dfrac{5}{3}-12\right)=-75}\\\\
\mathsf{3^x\cdot\left(- \dfrac{25}{3}\right)=-75 }\\\\
\mathsf{3^x=-75\div\left( -\dfrac{25}{3}\right)}\\\\
\mathsf{3^x=-75\cdot\left(- \dfrac{3}{25}\right) }\\\\
\mathsf{3^x= \dfrac{225}{25} }\\\\
\mathsf{3^x=9}\\
\mathsf{3^x=3^2}\\
\mathsf{\not3^x=\not3^2}\\\\
\mathsf{x=2}\\\\\\
\huge\boxed{\mathsf{S=\{2\}}}

Tenha ótimos estudos mano ;D
Perguntas interessantes