Matemática, perguntado por brasdiana46, 4 meses atrás

Fórmula de Bhaskara

 3 { \times }^{2}  - 15 \times  + 12 = 0

Soluções para a tarefa

Respondido por Toddynho2601
2

\tt{\purple{Vamos~l\acute{a}!!!}}

Para resolvermos essa \sf{\green{equac_{\!\!\!,}\tilde{a}o~do~2^{o}~grau}} precisamos de descobrir o valor do \sf{\green{delta}} sabendo que resolvermos o delta com essa formula \Rightarrow\sf{\green{~\Delta=b^{2}-4ac}} após descobrirmos o valor do delta precisamos descobrir o valor do \sf{\tt{x}} que damos essa formula \Rightarrow\sf{x=\green{~\dfrac{-b\pm\sqrt{\Delta} }{2a} }} após isso descobrirmos os dois valores do x.

-

Lembre-se:

\boxed{\begin{array}{lr}\sf{\red{a}x^{2}+\red{b}x+\red{c}=0}\end{array}}

Ent:

\boxed{\begin{array}{lr}\sf{\green{a}=\red{~~3}}\\\\\sf{\green{b}=\red{-15}}\\\\\sf{\green{c}=\red{12}}\end{array}}

-

\tt{\pink{Resposta:}}

\boxed{~\tt{\red{S=4,1}}~}

-

\tt{\blue{Calculo:}}

\boxed{\begin{array}{lr}\green{\tt{3x^{2}-15x+12=0 }}\end{array}}

-

Delta:

\boxed{\begin{array}{lr}\sf{\Delta\green{~=(-15)^{2}-4.~3.~12}} \\\\\sf{~\Delta=225-144}\\\\\sf{\Delta=\red{81}}\end{array}}

x :

\boxed{\begin{array}{lr}\sf{x=\green{~\dfrac{-b\pm\sqrt{\Delta} }{2a} }}\\\\\\\sf{x=\dfrac{15\pm\sqrt{81} }{2.3} }\\\\\\\sf{x=\dfrac{15\pm9 }{6}}\end{array}}

 \tt{\green{x^{1}}=\red{4}}\\\\\tt{\green{x^{2}}=\red{1}}

-

\overline{~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}

\Huge{\rm{\diagup\!\!\!\!A\diagup\!\!\!\!s\diagup\!\!\!\!s:\color{lime}\diagup\!\!\!\!T~~\diagup\!\!\!\!O~~\diagup\!\!\!\!D~~\diagup\!\!\!\!D~~\diagup\!\!\!\!Y~~}}\maltese

\overline{~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}

Anexos:

Toddynho2601: não
Toddynho2601: d boa
Toddynho2601: hmm
Toddynho2601: flw
Perguntas interessantes