formula de bhaskara exercicios? heeelllpppp :)
Soluções para a tarefa
Respondido por
0
A Fórmula de Bhaskarax=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}x=2a−b±√b2−4acx, equals, start fraction, minus, b, plus minus, square root of, b, start superscript, 2, end superscript, minus, 4, a, c, end square root, divided by, 2, a, end fractionPode parecer assustador, mas você vai se adaptar logo!
Experimente usar a fórmula agora.Exemplo solucionadoPrimeiramente, precisamos identificar os valores de a, b e c (os coeficientes). Primeira etapa: verifique se a equação está no formato mostrado acima, ax^2 + bx + c = 0ax2+bx+c=0a, x, start superscript, 2, end superscript, plus, b, x, plus, c, equals, 0:x^2+4x-21=0x2+4x−21=0x, start superscript, 2, end superscript, plus, 4, x, minus, 21, equals, 0aaa is the coefficient in front of x^2x2x, start superscript, 2, end superscript, so here a = 1a=1a, equals, 1 (note that aaa can’t equal 000 -- the x^2x2x, start superscript, 2, end superscript is what makes it a quadratic).bbb is the coefficient in front of the xxx, so here b = 4b=4b, equals, 4.ccc is the constant, or the term without any xxx next to it, so here c = -21c=−21c, equals, minus, 21.Em seguida, substituímos aaa, bbb e ccc na fórmula:x=\dfrac{-4\pm\sqrt{16-4\cdot 1\cdot (-21)}}{2}x=2−4±√16−4⋅1⋅(−21)x, equals, start fraction, minus, 4, plus minus, square root of, 16, minus, 4, dot, 1, dot, left parenthesis, minus, 21, right parenthesis, end square root, divided by, 2, end fractiona resolução deve ser a seguinte:\begin{aligned} x&=\dfrac{-4\pm\sqrt{100}}{2} \\\\ &=\dfrac{-4\pm 10}{2} \\\\ &=-2\pm 5 \end{aligned}x=2−4±√100=2−4±10=−2±5Portanto, x = 3x=3x, equals, 3 ou x = -7x=−7x, equals, minus, 7.
Experimente usar a fórmula agora.Exemplo solucionadoPrimeiramente, precisamos identificar os valores de a, b e c (os coeficientes). Primeira etapa: verifique se a equação está no formato mostrado acima, ax^2 + bx + c = 0ax2+bx+c=0a, x, start superscript, 2, end superscript, plus, b, x, plus, c, equals, 0:x^2+4x-21=0x2+4x−21=0x, start superscript, 2, end superscript, plus, 4, x, minus, 21, equals, 0aaa is the coefficient in front of x^2x2x, start superscript, 2, end superscript, so here a = 1a=1a, equals, 1 (note that aaa can’t equal 000 -- the x^2x2x, start superscript, 2, end superscript is what makes it a quadratic).bbb is the coefficient in front of the xxx, so here b = 4b=4b, equals, 4.ccc is the constant, or the term without any xxx next to it, so here c = -21c=−21c, equals, minus, 21.Em seguida, substituímos aaa, bbb e ccc na fórmula:x=\dfrac{-4\pm\sqrt{16-4\cdot 1\cdot (-21)}}{2}x=2−4±√16−4⋅1⋅(−21)x, equals, start fraction, minus, 4, plus minus, square root of, 16, minus, 4, dot, 1, dot, left parenthesis, minus, 21, right parenthesis, end square root, divided by, 2, end fractiona resolução deve ser a seguinte:\begin{aligned} x&=\dfrac{-4\pm\sqrt{100}}{2} \\\\ &=\dfrac{-4\pm 10}{2} \\\\ &=-2\pm 5 \end{aligned}x=2−4±√100=2−4±10=−2±5Portanto, x = 3x=3x, equals, 3 ou x = -7x=−7x, equals, minus, 7.
Perguntas interessantes
Geografia,
9 meses atrás
Matemática,
1 ano atrás