Matemática, perguntado por tati106, 1 ano atrás

forma trigonométrica do número complexo z = 1 + i

Soluções para a tarefa

Respondido por Verkylen
7
Um número complexo na forma algébrica z=a+bi pode ser representado na forma trigonométrica z=p(\cos\theta+i\,\text{sen}\,\theta), em que:

p=\sqrt{a^2+b^2};\qquad\qquad\cos\theta=\dfrac{a}{p};\qquad\qquad\text{sen}\,\theta=\dfrac{b}{p}.


No complexo z=1+i, temos que a=1b=1.
Logo:

p=\sqrt{a^2+b^2}\\\\p=\sqrt{(1)^2+(1)^2}\longrightarrow{p}=\sqrt2

Por conseguinte:

\begin{matrix}\cos\theta=\dfrac{a}{p}\\\\\cos\theta=\dfrac{1}{\sqrt2}\\\\\cos\theta=\dfrac{\sqrt2}{2}\\\\\therefore\theta=\dfrac{\pi}{4}+k2\pi,\quad\text{para}\ k\in\mathbb{N}\end{matrix}\qquad\qquad\begin{matrix}\text{sen}\,\theta=\dfrac{b}{p}\\\\\text{sen}\,\theta=\dfrac{1}{\sqrt2}\\\\\text{sen}\,\theta=\dfrac{\sqrt2}{2}\\\\\therefore\theta=\dfrac{\pi}{4}+k2\pi,\quad\text{para}\ k\in\mathbb{N}\end{matrix}

Por fim, substituindo os valores na forma trigonométrica do número complexo:

z=p(\cos\theta+i\,\text{sen}\,\theta)\\\\\\\boxed{\boxed{z=\sqrt2\left(\cos\!\left(\dfrac{\pi}{4}+k2\pi\right)+i\,\text{sen}\!\left(\dfrac{\pi}{4}+k2\pi\right)\right),\quad\text{para}\ k\in\mathbb{N}}}

ou, se preferir:

\boxed{\boxed{z=\sqrt2\cos\!\left(\dfrac{\pi}{4}+k2\pi\right)+i\sqrt2\,\text{sen}\!\left(\dfrac{\pi}{4}+k2\pi\right),\quad\text{para}\ k\in\mathbb{N}}}



Note que:

1+i=\sqrt2\cos\!\left(\dfrac{\pi}{4}+k2\pi\right)+i\sqrt2\,\text{sen}\!\left(\dfrac{\pi}{4}+k2\pi\right)
Perguntas interessantes