Matemática, perguntado por jgabrielaruaenois, 10 meses atrás

forma fracionaria de 0,232323232323...........

Soluções para a tarefa

Respondido por campinhoskkj
5
E aí, boa tarde!


0,23232323..., período 23 (dois algarismos)


Para encontrarmos a fração geratriz seguimos os seguintes passos.

1º passo – relacionar a dízima periódica com uma incógnita

Por ex:

x = 0,333333...

2º passo – multiplicar os dois lados da igualdade por um múltiplo de 10, de acordo com a quantidade de algarismos do período, por exemplo:

um algarismo, multiplicar por 10
dois algarismos, multiplicar por 100
três algarismos, multiplicar por 1000, e assim sucessivamente.

x = 0,333333 ... * 10
10x = 3,3333 ...

3º passo – subtrair a segunda igualdade da primeira igualdade

10x = 3,3333
– x = 0,3333
9x = 3

9x = 3
x = 3/9

Exemplo 2

Encontrar a fração geratriz da seguinte dízima periódica: 0,232323... .

1º passo
x = 0,232323....

2º passo
x = 0,232323 ... * 100
100x = 23,23

3º passo
100x = 23,23
– x = 0,23

99x = 23
99x = 23
x = 23/99

Exemplo 3

Determinar a fração geratriz do número racional 0,562562...

1º passo
x = 0,562562...

2º passo
x = 0,562562... * 1000
1000x = 562,562

3º passo
1000x = 562,562
– x = 0,562

999x = 562
x = 562/999
Perguntas interessantes