Matemática, perguntado por nisiamarques121, 1 ano atrás

foi realizada uma pesquisa, num bairro de determinada cidade, com um grupo de 500 crianças de 3 a 12 anos de idade. para esse grupo, em função da idade x da criança, concluiu-se que o peso médio p(x), em quilogramas, era dado pelo determinante da matriz A, em que:  \left[\begin{array}{ccc}1&-1&1\\3&0&-x\\0&2& \frac{2}{3} \end{array}\right] com base na formula p(x)=det A, determine:
a) o peso médio de uma criança de 7 anos

b) a idade mais provável de uma criança cujo peso é 30 kg.

Soluções para a tarefa

Respondido por numero20
367

Primeiramente, vamos calcular o determinante dessa matriz. Uma vez que essa matriz possui 3 linhas e 3 colunas e a seguinte fórmula geral:


a11 a12 a13

a21 a22 a23

a31 a32 a33


O seu determinante será dado por:


Det = a11×a22×a33 + a12×a23×a31 + a13×a21×a32 - (a13×a22×a31 + a11×a23×a32 + a12×a21×a33)


Substituindo os valores, temos:


Det = 1×0×(2/3) + (-1)×(-x)×0 + 1×3×2 - [1×0×0 + 1×(-x)×2 + (-1)×3×(2/3)]


Det = p(x) = 0 + 0 + 6 - (0 - 2x - 2)


p(x) = 2x + 8


Com a função, podemos responder as alternativas:


a) p (7) = 2 × 7 + 8 = 22 kg


b) 30 = 2x + 8 → x = 11 anos

Perguntas interessantes