Matemática, perguntado por lessaalaura, 5 meses atrás

fatore o trinomio 9a²b²-12abc+4c²​

Soluções para a tarefa

Respondido por pietrooliveira3060
1

Resposta:

(3ab-2c)^{2}

Explicação passo a passo:

Pelo enunciado, tem-se:

9a^{2} b^{2}-12abc+4c^{2} \\(3ab)^{2}-2(3ab)(2c)+(2c)^{2}\\

Utilizando o quadrado da diferença: (a-b)^{2} = a^{2}-2ab+b^{2}\\, tem-se:

(3ab)^{2}-2(3ab)(2c)+(2c)^{2} = (3ab-2c)^{2}

Espero ter ajudado! π

Respondido por SocratesA
6

Efetuando-se os devidos procedimentos da fatoração do trinômio,

obteve-se que a sua forma fatorada é dada por (3ab - 2c)^2\\

O trinômio é um trinômio quadrado perfeito. Para fatorá-lo extrai-se a

raiz quadrada do primeiro e terceiro termos.

9a^2b^2 - 12abc + 4c^2\\

Raiz quadrada de 9a^2b^2 = 3ab\\

Raiz quadrada de 4c^2 = 2c\\

Verificação:

2.3ab.2c = 12abc\\

Logo tem-se que a forma fatorada do trinômio é dada por:

(3ab - 2c)^2\\

Veja mais em:

https://brainly.com.br/tarefa/7335853

https://brainly.com.br/tarefa/845463

Anexos:
Perguntas interessantes