Matemática, perguntado por felipequentino22, 9 meses atrás

(FASP) O valor de
  {( \frac{ \sqrt{3} }{2}  + \frac{1i}{2}  )}^{10}
é:

a)
 \frac{1}{2}  -  \frac{ \sqrt{3} }{2}  \times i
b)
1 + i
c)
 \frac{ \sqrt{3} }{2}  +  \frac{1i}{2}
d)
 \frac{ - 1}{2}  +   \frac{ \sqrt{3} }{2}  \times i



Soluções para a tarefa

Respondido por CyberKirito
2

Caso esteja pelo app, e tenha problemas para visualizar esta resposta, experimente abrir pelo navegador

https://brainly.com.br/tarefa/38546053

\sf z=\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}i\\\sf \rho=\sqrt{\bigg(\dfrac{\sqrt{3}}{2}\bigg)^2+\bigg(\dfrac{1}{2}\bigg)^2}\\\sf\rho=\sqrt{\dfrac{3}{4}+\dfrac{1}{4}}=\sqrt{1}=1\\\sf cos(\theta)=\dfrac{\frac{\sqrt{3}}{2}}{1}=\dfrac{\sqrt{3}}{2}\\\sf sen(\theta)=\dfrac{\frac{1}{2}}{1}=\frac{1}{2}\\\sf \theta=\dfrac{\pi}{6}\\\sf z=1\bigg[cos\bigg(\dfrac{\pi}{6}\bigg)+i~sen\bigg(\dfrac{\pi}{6}\bigg)\bigg]

\sf z^{10}=1^{10}\cdot\bigg[cos\bigg(10\cdot\dfrac{\pi}{6}\bigg)+i~sen\bigg(10\cdot\dfrac{\pi}{6}\bigg) \bigg]\\\sf z^{10}=cos\bigg(\dfrac{5\pi}{3}\bigg)+i~sen\bigg(\dfrac{5\pi}{3}\bigg)\\\large\boxed{\boxed{\boxed{\boxed{\sf\bigg(\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}i\bigg)^{10}=\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}i}}}}

Perguntas interessantes