Matemática, perguntado por biancasc21, 1 ano atrás

Faça uma estimativa inferior da área entre o gráfico da função f(x)=x^3-x+1 e o eixo x, limitado pelas retas x=0 e x=1. Utilize 5 retângulos com base 0,2. O valor estimado da área é:
Escolha uma:
a. 0,45 u.a
b. 0,32 u.a.
c. 0,68 u.a.
d. 1,13 u.a.
e. 0,82 u.a.

Soluções para a tarefa

Respondido por Lotar
22
A integral de Riemann se originou a partir da tentativa de se calcular áreas entre curvas.Para isso,utilizava-se retângulos igualmente espaçados e fazia-se uma estimativa da área.Porém,vale ressaltar aqui que calcular áreas de curvas por meios desses mesmos retângulos é algo que remete ao começo do estudo de integrais e,portanto,se você já sabe como calcular integrais por meio do Teorema Fundamental do Cálculo,é muito mais prático usá-lo.Para esta questão,a área será a integral definida:

 \int\limits^1_0{x^3-x+1} \, dx =  \int\limits^1_0 {x^3} \, dx - \int\limits^1_0 {x} \, dx + \int\limits^1_0 {1} \, dx

Isso resulta em:

(1/4)-(1/2)+1 = (1-2+4)/4=3/4=0,75

Como os retângulos não preenchem completamente o espaço entre a curva e o eixo x,a estimativa obtida será menor que 0,75,mas próxima a tal valor.Logo,a resposta seria : c. 0,68 u.a.
Perguntas interessantes