f(x,y,z) = x² + y² + z² máximo e mínimo
Yoda:
https://drive.google.com/drive/mobile/folders/17MoVtd6Ut9E-Osht3d15-NM5BApQO90e
Soluções para a tarefa
Respondido por
2
Olá.
Uma vez mais, temos uma questão sobre Multiplicadores de Lagrange, mas dessa vez com duas restrições para maximização. Felizmente, o procedimento ainda é o mesmo: Para maximizar F, temos que satisfazer o seguinte sistema:
Vamos fazer contas então:
A primeira equação do sistema fica:
Substituímos na segunda e terceira equações:
(i) e (ii) formam um sistema de equações:
Agora acabou: Voltamos ao sistema para descobrir (x,y,z):
O ponto de extremo é, portanto:
Uma vez mais, temos uma questão sobre Multiplicadores de Lagrange, mas dessa vez com duas restrições para maximização. Felizmente, o procedimento ainda é o mesmo: Para maximizar F, temos que satisfazer o seguinte sistema:
Vamos fazer contas então:
A primeira equação do sistema fica:
Substituímos na segunda e terceira equações:
(i) e (ii) formam um sistema de equações:
Agora acabou: Voltamos ao sistema para descobrir (x,y,z):
O ponto de extremo é, portanto:
Perguntas interessantes
Inglês,
9 meses atrás
Inglês,
9 meses atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Química,
1 ano atrás