f(x)= sec( x) : calcule qual é a derivada
Soluções para a tarefa
Respondido por
3
A derivada da secante é calculada pela regra do tombo:
![\boxed{f(x)=x^n\rightarrow\ f(x)'=n*x^{n-1}} \boxed{f(x)=x^n\rightarrow\ f(x)'=n*x^{n-1}}](https://tex.z-dn.net/?f=%5Cboxed%7Bf%28x%29%3Dx%5En%5Crightarrow%5C+f%28x%29%27%3Dn%2Ax%5E%7Bn-1%7D%7D)
Sabemos que:
![f(x)=cosx\rightarrow\ f(x)'=senx f(x)=cosx\rightarrow\ f(x)'=senx](https://tex.z-dn.net/?f=f%28x%29%3Dcosx%5Crightarrow%5C+f%28x%29%27%3Dsenx)
![f(x)=secx\\\\ f(x)=\frac{1}{cosx}\\\\ f(x)'=cosx^{-1}\\\\ f(x)'=-senx^{-2}\\\\ f(x)'=-\frac{1}{sen^2x}\\\\ \boxed{f(x)'=-cossec^2x} f(x)=secx\\\\ f(x)=\frac{1}{cosx}\\\\ f(x)'=cosx^{-1}\\\\ f(x)'=-senx^{-2}\\\\ f(x)'=-\frac{1}{sen^2x}\\\\ \boxed{f(x)'=-cossec^2x}](https://tex.z-dn.net/?f=f%28x%29%3Dsecx%5C%5C%5C%5C+f%28x%29%3D%5Cfrac%7B1%7D%7Bcosx%7D%5C%5C%5C%5C+f%28x%29%27%3Dcosx%5E%7B-1%7D%5C%5C%5C%5C+f%28x%29%27%3D-senx%5E%7B-2%7D%5C%5C%5C%5C+f%28x%29%27%3D-%5Cfrac%7B1%7D%7Bsen%5E2x%7D%5C%5C%5C%5C+%5Cboxed%7Bf%28x%29%27%3D-cossec%5E2x%7D+)
Sabemos que:
Respondido por
0
Perguntas interessantes