expressão algébrica:a diferença de três números consecutivos
Soluções para a tarefa
(x-1)+(x)+(x+1)
Explicação passo-a-passo:
E com essas informações é possível fazer algumas demonstrações como:
• A soma de dois números inteiros consecutivos será sempre a diferença de seus quadrados.
Considere x como sendo um número inteiro qualquer, o seu sucessor pode ser representado pelo polinômio x + 1. Somando esses dois polinômios chegaremos à seguinte expressão algébrica:
x + (x + 1) = x + x + 1 = 2x + 1
A diferença dos quadrados desses dois números consecutivos será representada pela seguinte expressão algébrica:
(x +1)2 - x2 = (x2 + 2x + 1) – x2 = x2 + 2x + 1 - x2 = 2x + 1
Comparado as duas expressões algébricas encontradas, podemos confirmar que
x + (x + 1) = (x +1)2 - x2
• A soma de cinco números inteiros consecutivos será sempre múltiplo de 5.
Considere como sendo cinco números inteiros consecutivos os polinômios: x-2 ; x-1 ; x ; x + 1 ; x + 2.
Um número para que seja múltiplo de cinco pode ser escrito da seguinte forma: 5x, onde x é um número inteiro qualquer, ou seja, qualquer número que multiplicado por 5 será múltiplo de cinco.