Matemática, perguntado por carlosds1981, 1 ano atrás

Explique o porque a função f(x) = 1/x não é contínua no intervalo [ -1, 1].

Soluções para a tarefa

Respondido por hcsmalves
0
No intervalo de [-1, 1], e  sendo  f(x) =1/x, não existe f(0).

carlosds1981: Então é correto afirmar:
carlosds1981: A função é descontínua em x = 1, pois o limite à direita e à esquerda quando x tende a 1 é diferente e, portanto, não existe .
A função é descontínua em x =1, pois a função não e definida nesse ponto.
A função h(x) é descontínua em todos os intervalos que não contêm o ponto x = 1.
A função h(x) é descontínua em todo o seu domínio..
carlosds1981: Obrigado pelo suporte! Se puder me auxiliar nesse questionamento, lhe agradeço!
hcsmalves: Alguns autores classificam em contínua, não contínua e descontínua. Outros não fazem distinção entre não contínua e descontínua. Como não existe f(0) eu diria não contínua. Se existisse f(0) eu diria descontínua.
carlosds1981: Obrigado pela ajuda!
hcsmalves: De nada.
hcsmalves: Agradecido pela melhor resposta.
Perguntas interessantes