Existem números com muitos divisores, outros com poucos divisores e um número que tem apenas um
divisor. A ideia de números primos e de números compostos se baseia na quantidade de divisores de um
número natural.
Vamos analisar a quantidade de divisores dos números de 1 a 12.
D(1):
D(4)
D(7)
D(10)
D(2):
D(5):
D(8):
D(11)
D(3):
D(6):
D(9):
D(12):
Soluções para a tarefa
Respondido por
21
D(1): 1 divisor =1
D(4):3 divisores=1,2,4
D(7):2 divisores=1,7
D(10):4 divisores=1,2,5,10
D(2):2 divisores=1,2
D(5):2 divisores=1,5
D(8):4 divisores=1,2,4,8
D(11):2 divisores=1,11
D(3):2 divisores=1,3
D(6):4 divisores=1,2,3,6
D(9):3 divisores=1,3,9
D(12): 6 divisores=1,2,3,4,6,12
D(4):3 divisores=1,2,4
D(7):2 divisores=1,7
D(10):4 divisores=1,2,5,10
D(2):2 divisores=1,2
D(5):2 divisores=1,5
D(8):4 divisores=1,2,4,8
D(11):2 divisores=1,11
D(3):2 divisores=1,3
D(6):4 divisores=1,2,3,6
D(9):3 divisores=1,3,9
D(12): 6 divisores=1,2,3,4,6,12
Perguntas interessantes
Matemática,
8 meses atrás
Geografia,
8 meses atrás
Matemática,
8 meses atrás
Direito,
11 meses atrás
Geografia,
11 meses atrás
Português,
1 ano atrás
Física,
1 ano atrás
História,
1 ano atrás