Matemática, perguntado por vlogsezoeiras, 9 meses atrás


EXERCÍCIOS BÁSICOS
4) Escreva as matrizes:
a) A = (ajj)2x 3 tal que ajj = i + j.
b) A = (aj)3 x 2 tal que aj = 1 - j.
c) B = (bij)2 x 2 de modo que bij = 21 - j.​

Soluções para a tarefa

Respondido por PhillDays
9

.

\red{a)}~\sf\large\blue{A_{2,3}=\left[\begin{array}{ccc}2&3&4\\\\3&4&5\\\end{array}\right]}

.

\red{b)}~\sf\large\blue{A_{3,2}=\left[\begin{array}{cc}0&-1\\\\0&-1\\\\0&-1\\\end{array}\right]}

.

\red{c)}~ \sf\large\blue{B_{2,2}=\left[\begin{array}{cc}20&19\\\\20&19\\\end{array}\right]}

.

\bf\large\green{\underline{\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad}}

\green{\rm\underline{EXPLICAC_{\!\!\!,}\tilde{A}O\ PASSO{-}A{-}PASSO\ \ \ }}

❄☃ \sf(\gray{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly}) ☘☀

.

☺lá, Vlogs, como tens passado nestes tempos de quarentena⁉ E os estudos à distância, como vão⁉ Espero que bem❗ Acompanhe a resolução abaixo. ✌

.

\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}

.

\sf\large\blue{A_{2,3}=\left[\begin{array}{ccc}i+j&i+j&i+j\\\\i+j&i+j&i+j\\\end{array}\right]}

.

\sf\large\blue{A_{2,3}=\left[\begin{array}{ccc}1+1&1+2&1+3\\\\2+1&2+2&2+3\\\end{array}\right]}

.

\red{a)}~\sf\large\blue{A_{2,3}=\left[\begin{array}{ccc}2&3&4\\\\3&4&5\\\end{array}\right]}

.

.

\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}

.

\sf\large\blue{A_{3,2}=\left[\begin{array}{cc}1-j&1-j\\\\1-j&1-j\\\\1-j&1-j\\\end{array}\right]}

.

\sf\large\blue{A_{3,2}=\left[\begin{array}{cc}1-1&1-2\\\\1-1&1-2\\\\1-1&1-2\\\end{array}\right]}

.

\red{b)}~\sf\large\blue{A_{3,2}=\left[\begin{array}{cc}0&-1\\\\0&-1\\\\0&-1\\\end{array}\right]}

.

.

\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}

.

\sf\large\blue{B_{2,2}=\left[\begin{array}{cc}21-j&21-j\\\\21-j&21-j\\\end{array}\right]}

.

\sf\large\blue{B_{2,2}=\left[\begin{array}{cc}21-1&21-2\\\\21-1&21-2\\\end{array}\right]}

.

\red{c)}~ \sf\large\blue{B_{2,2}=\left[\begin{array}{cc}20&19\\\\20&19\\\end{array}\right]}

.

.

.

.

.

\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}

\bf\large\blue{Bons\ estudos.}

(\orange{D\acute{u}vidas\ nos\ coment\acute{a}rios}) ☄

\bf\large\red{\underline{\qquad \qquad \qquad \qquad \qquad \qquad \quad }}\LaTeX

❄☃ \sf(\gray{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly}) ☘☀

.

.

.

.

\large\textit{"Absque~sudore~et~labore}

\large\textit{nullum~opus~perfectum~est."}

Anexos:
Perguntas interessantes