Matemática, perguntado por ojoo99000, 7 meses atrás

EXERCÍCIO: RACIONALIZE AS FRAÇÕES ABAIXO.​

Anexos:

Soluções para a tarefa

Respondido por renatoaugustobh
1

Olá!

Vamos calcular:

a) \frac{7}{\sqrt{3} } =

\frac{7.\sqrt{3}}{\sqrt{3}.\sqrt{3} } =

\frac{7\sqrt{3} }{(\sqrt{3} )^{2} } =

\frac{7\sqrt{3}}{3}

b) \frac{2}{\sqrt{3}+\sqrt{7}} =

\frac{2(\sqrt{3}-\sqrt{7})}{(\sqrt{3}+\sqrt{7})(\sqrt{3}-\sqrt{7})} =

\frac{2(\sqrt{3}+\sqrt{7})}{(\sqrt{3}+\sqr{7})(\sqrt{3}-\sqr{7})} =

\frac{2(\sqrt{3}-\sqrt{7})}{(\sqrt{3})^{2}-(\sqrt{7})^{2}} =

\frac{2(\sqrt{3}-\sqrt{7})}{3-7} =

\frac{2(\sqrt{3}-\sqrt{7})}{-4} =

-\frac{2(\sqrt{3}-\sqrt{7})}{4}

c) \frac{3}{\sqrt{5} } =

\frac{3.\sqrt{5}}{\sqrt{5}.\sqrt{5} } =

\frac{3\sqrt{5} }{(\sqrt{5} )^{2} } =

\frac{3\sqrt{5}}{5}

d) \frac{e}{\sqrt[3]{a} } =

\frac{e.\sqrt[3]{a} }{\sqrt[3]{a}.\sqrt[3]{a}} =

\frac{e\sqrt[3]{a} }{(\sqrt[3]{a} )^{2} } =

\frac{e\sqrt[3]{a}}{\sqrt[3]{a^{2} } } =

\frac{e\sqrt[3]{a}}{a^{\frac{2}{3} } }

Abraços!

Perguntas interessantes