Exemplificação e explicação de funções do 1° e 2° grau.
Soluções para a tarefa
Respondido por
8
1o grau: Consideremos x e y duas variáveis, sendo uma dependente da outra, isto é, para cada valor atribuído a x corresponde um valor para y. Definimos essa dependência como função, nesse caso, y está em função de x. O conjunto de valores conferidos a x deve ser chamado de domínio da função e os valores de y são a imagem da função.
Toda função é definida por uma lei de formação, no caso de uma função do 1º grau a lei de formação será a seguinte: y = ax + b, onde a e b são números reais e a ≠ 0.
Função crescente: à medida que os valores de x aumentam, os valores correspondentes em y também aumentam.
Função decrescente: à medida que os valores de x aumentam, os valores correspondentes de y diminuem.
Raiz ou zero de uma função do 1º grau
Para determinar a raiz ou o zero de uma função do 1º grau é preciso considerar
y = 0. De acordo com gráfico, no instante em que y assume valor igual a zero, a reta intersecta o eixo x em um determinado ponto, determinando a raiz ou o zero da função.
Vamos determinar a raiz das funções a seguir:
y = 4x + 2
y = 0
4x + 2 = 0
4x = –2
x = –2/4
x = –1/2
reta representada pela função y = 4x + 2 intersecta o eixo x no seguinte valor: –1/2
y = – 2x + 10
y = 0
– 2x + 10 = 0
– 2x = – 10 (–1)
2x = 10
x = 10/2
x = 5
2o grau:
Uma função para ser do 2º grau precisa assumir algumas características, pois ela deve ser dos reais para os reais, definida pela fórmula f(x) = ax2 + bx + c, sendo que a, b e c são números reais com a diferente de zero. Concluímos que a condição para que uma função seja do 2º grau é que o valor de a, da forma geral, não pode ser igual a zero.
Então, podemos dizer que a definição de função do 2º grau é: f: R→ R definida por f(x) = ax2 + bx + c, com a ? R* e b e c ? R.
Numa função do segundo grau, os valores de b e c podem ser iguais a zero, quando isso ocorrer, a equação do segundo grau será considerada incompleta.
Veja alguns exemplos de Função do 2º grau:
f(x) = 5x2 – 2x + 8; a = 5, b = – 2 e c = 8 (Completa)
f(x) = x2 – 2x; a = 1, b = – 2 e c = 0 (Incompleta)
Toda função do 2º grau também terá domínio, imagem e contradomínio.
Exemplo 1
A função do 2º grau f(x) = – x2 + x – 2, pode ser representada por y = – x2 + x – 2. Para acharmos o seu domínio e contradomínio, devemos primeiro estipular alguns valores para x. Vamos dizer que x = –3; –2; –1; 0; 1; 2. Para cada valor de x teremos um valor em y, veja:
x = – 3
y = – (–3)2 + (–3) – 2
y = –9 – 3 – 2
y = – 12 – 2
y = – 14
x = – 2
y = –( – 2)2 + (– 2) – 2
y = – 4 – 2 – 2
y = – 8
x = –1
y = – (–1)2 + (–1) – 2
y = – 1 – 1 – 2
y = – 2 – 2
y = – 4
x = 0
y = 02 + 0 – 2
y = – 2
x = 1
y = –(+ 1)2 + 1 – 2
y = - (+1) + 1 - 2
y = – 1 + 1 – 2
y = – 2
x = 2
y = – (+ 22) + 2 – 2
y = – (+ 4) + 2 – 2
Y = – 4 + 0
y = – 4
Toda função é definida por uma lei de formação, no caso de uma função do 1º grau a lei de formação será a seguinte: y = ax + b, onde a e b são números reais e a ≠ 0.
Função crescente: à medida que os valores de x aumentam, os valores correspondentes em y também aumentam.
Função decrescente: à medida que os valores de x aumentam, os valores correspondentes de y diminuem.
Raiz ou zero de uma função do 1º grau
Para determinar a raiz ou o zero de uma função do 1º grau é preciso considerar
y = 0. De acordo com gráfico, no instante em que y assume valor igual a zero, a reta intersecta o eixo x em um determinado ponto, determinando a raiz ou o zero da função.
Vamos determinar a raiz das funções a seguir:
y = 4x + 2
y = 0
4x + 2 = 0
4x = –2
x = –2/4
x = –1/2
reta representada pela função y = 4x + 2 intersecta o eixo x no seguinte valor: –1/2
y = – 2x + 10
y = 0
– 2x + 10 = 0
– 2x = – 10 (–1)
2x = 10
x = 10/2
x = 5
2o grau:
Uma função para ser do 2º grau precisa assumir algumas características, pois ela deve ser dos reais para os reais, definida pela fórmula f(x) = ax2 + bx + c, sendo que a, b e c são números reais com a diferente de zero. Concluímos que a condição para que uma função seja do 2º grau é que o valor de a, da forma geral, não pode ser igual a zero.
Então, podemos dizer que a definição de função do 2º grau é: f: R→ R definida por f(x) = ax2 + bx + c, com a ? R* e b e c ? R.
Numa função do segundo grau, os valores de b e c podem ser iguais a zero, quando isso ocorrer, a equação do segundo grau será considerada incompleta.
Veja alguns exemplos de Função do 2º grau:
f(x) = 5x2 – 2x + 8; a = 5, b = – 2 e c = 8 (Completa)
f(x) = x2 – 2x; a = 1, b = – 2 e c = 0 (Incompleta)
Toda função do 2º grau também terá domínio, imagem e contradomínio.
Exemplo 1
A função do 2º grau f(x) = – x2 + x – 2, pode ser representada por y = – x2 + x – 2. Para acharmos o seu domínio e contradomínio, devemos primeiro estipular alguns valores para x. Vamos dizer que x = –3; –2; –1; 0; 1; 2. Para cada valor de x teremos um valor em y, veja:
x = – 3
y = – (–3)2 + (–3) – 2
y = –9 – 3 – 2
y = – 12 – 2
y = – 14
x = – 2
y = –( – 2)2 + (– 2) – 2
y = – 4 – 2 – 2
y = – 8
x = –1
y = – (–1)2 + (–1) – 2
y = – 1 – 1 – 2
y = – 2 – 2
y = – 4
x = 0
y = 02 + 0 – 2
y = – 2
x = 1
y = –(+ 1)2 + 1 – 2
y = - (+1) + 1 - 2
y = – 1 + 1 – 2
y = – 2
x = 2
y = – (+ 22) + 2 – 2
y = – (+ 4) + 2 – 2
Y = – 4 + 0
y = – 4
ViniciusGso:
Valeu
Perguntas interessantes