Matemática, perguntado por anasofiags223, 4 meses atrás

estude (un) quanto à monotonia
un=
 \frac{6n + 5}{2n}


magalhaesmarquese: ola tufo bem
anasofiags223: ola, consegue ajudar?

Soluções para a tarefa

Respondido por Nasgovaskov
1

Resposta: \boldsymbol{u_n=\frac{6n+5}{2n}} é monótona decrescente.

Vamos lá. Pelo estudo de sucessões monótonas, sabe-se que:

\text{$u_{n+1}-u_n > 0\implies\rm u_n~\acute{e}$ mon$\rm\acute{o}$tona crescente.}

\text{$u_{n+1}-u_n = 0\implies\rm u_n~\acute{e}$ mon$\rm\acute{o}$tona constante.}

\text{$u_{n+1}-u_n < 0\implies\rm u_n~\acute{e}$ mon$\rm\acute{o}$tona decrescente.}

Então, dado a seguinte sucessão:

u_n=\dfrac{6n+5}{2n}

Segue que:

\text{$u_{n+1}=\dfrac{6(n+1)+5}{2(n+1)}=\dfrac{6n+6+5}{2n+2}=\dfrac{6n+11}{2n+2}$}

\therefore

\begin{array}{l}u_{n+1}-u_n=\dfrac{6n+11}{2n+2}-\dfrac{6n+5}{2n}\\\\u_{n+1}-u_n=\dfrac{n(6n+11)}{2n(n+1)}-\dfrac{(n+1)(6n+5)}{2n(n+1)}\\\\u_{n+1}-u_n=\dfrac{6n^2+11n}{2n(n+1)}-\dfrac{6n^2+11n+5}{2n(n+1)}\\\\u_{n+1}-u_n=\dfrac{6n^2+11n-6n^2-11n-5}{2n(n+1)}\\\\u_{n+1}-u_n=-\dfrac{5}{2n(n+1)}\end{array}

Analisando apenas o seu denominador, vemos que, obrigatoriamente, 2n(n + 1) > 0 para todo n pertencente aos naturais com n ≠ 0. Todavia, como - 5 está sendo dividido por 2n(n + 1), então -\frac{5}{2n(n + 1)} < 0 para todo n pertencente aos naturais com n ≠ 0.

Portanto, a sucessão é monótona decrescente.


anasofiags223: muito obrigada
anasofiags223: pode me ajudar em mais uma por favor?
Perguntas interessantes