Estou precisando de ajuda nesta questão:
Anexos:
![](https://pt-static.z-dn.net/files/ddb/f85d730404dc8ba5e95b49ba7b073f8a.png)
Soluções para a tarefa
Respondido por
1
Calcular a área entre as curvas determinadas pelas equações
![x^{1/2}+y^{1/2}=a^{1/2}~\text{ e }~x+y=a. x^{1/2}+y^{1/2}=a^{1/2}~\text{ e }~x+y=a.](https://tex.z-dn.net/?f=x%5E%7B1%2F2%7D%2By%5E%7B1%2F2%7D%3Da%5E%7B1%2F2%7D%7E%5Ctext%7B+e+%7D%7Ex%2By%3Da.)
com![a>0. a>0.](https://tex.z-dn.net/?f=a%26gt%3B0.)
_____________________________
Encontrando os pontos de interseção entre as curvas:
![\left\{ \begin{array}{lc} x^{1/2}+y^{1/2}=a^{1/2}&~~\mathbf{(i)}\\ \\ x+y=a&~~\mathbf{(ii)} \end{array} \right. \left\{ \begin{array}{lc} x^{1/2}+y^{1/2}=a^{1/2}&~~\mathbf{(i)}\\ \\ x+y=a&~~\mathbf{(ii)} \end{array} \right.](https://tex.z-dn.net/?f=%5Cleft%5C%7B+%5Cbegin%7Barray%7D%7Blc%7D+x%5E%7B1%2F2%7D%2By%5E%7B1%2F2%7D%3Da%5E%7B1%2F2%7D%26amp%3B%7E%7E%5Cmathbf%7B%28i%29%7D%5C%5C+%5C%5C+x%2By%3Da%26amp%3B%7E%7E%5Cmathbf%7B%28ii%29%7D+%5Cend%7Barray%7D+%5Cright.)
Isolando
na equação
e substituindo na equação
temos
![y=a-x\\ \\ \\ x^{1/2}+(a-x)^{1/2}=a^{1/2}\\ \\ (a-x)^{1/2}=a^{1/2}-x^{1/2} y=a-x\\ \\ \\ x^{1/2}+(a-x)^{1/2}=a^{1/2}\\ \\ (a-x)^{1/2}=a^{1/2}-x^{1/2}](https://tex.z-dn.net/?f=y%3Da-x%5C%5C+%5C%5C+%5C%5C+x%5E%7B1%2F2%7D%2B%28a-x%29%5E%7B1%2F2%7D%3Da%5E%7B1%2F2%7D%5C%5C+%5C%5C+%28a-x%29%5E%7B1%2F2%7D%3Da%5E%7B1%2F2%7D-x%5E%7B1%2F2%7D)
Elevando os dois lados ao quadrado, temos
![\left[(a-x)^{1/2} \right ]^{2}=\left(a^{1/2}-x^{1/2} \right )^{\!2}\\ \\ a-x=\left(a^{1/2}\right)^{\!2}-2\cdot a^{1/2}\cdot x^{1/2}+\left(x^{1/2}\right)^{\!2}\\ \\ \\ \diagup\!\!\!\! a-x=\diagup\!\!\!\! a-2(ax)^{1/2}+x\\ \\ \\ \diagup\!\!\!\! 2(ax)^{1/2}=\diagup\!\!\!\! 2x\\ \\ (ax)^{1/2}=x \left[(a-x)^{1/2} \right ]^{2}=\left(a^{1/2}-x^{1/2} \right )^{\!2}\\ \\ a-x=\left(a^{1/2}\right)^{\!2}-2\cdot a^{1/2}\cdot x^{1/2}+\left(x^{1/2}\right)^{\!2}\\ \\ \\ \diagup\!\!\!\! a-x=\diagup\!\!\!\! a-2(ax)^{1/2}+x\\ \\ \\ \diagup\!\!\!\! 2(ax)^{1/2}=\diagup\!\!\!\! 2x\\ \\ (ax)^{1/2}=x](https://tex.z-dn.net/?f=%5Cleft%5B%28a-x%29%5E%7B1%2F2%7D+%5Cright+%5D%5E%7B2%7D%3D%5Cleft%28a%5E%7B1%2F2%7D-x%5E%7B1%2F2%7D+%5Cright+%29%5E%7B%5C%212%7D%5C%5C+%5C%5C+a-x%3D%5Cleft%28a%5E%7B1%2F2%7D%5Cright%29%5E%7B%5C%212%7D-2%5Ccdot+a%5E%7B1%2F2%7D%5Ccdot+x%5E%7B1%2F2%7D%2B%5Cleft%28x%5E%7B1%2F2%7D%5Cright%29%5E%7B%5C%212%7D%5C%5C+%5C%5C+%5C%5C+%5Cdiagup%5C%21%5C%21%5C%21%5C%21+a-x%3D%5Cdiagup%5C%21%5C%21%5C%21%5C%21+a-2%28ax%29%5E%7B1%2F2%7D%2Bx%5C%5C+%5C%5C+%5C%5C+%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%28ax%29%5E%7B1%2F2%7D%3D%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2x%5C%5C+%5C%5C+%28ax%29%5E%7B1%2F2%7D%3Dx)
Elevando os dois lados ao quadrado novamente, temos
![\left[(ax)^{1/2} \right ]^{\!2}=x^{2}\\ \\ ax=x^{2}\\ \\ ax-x^{2}=0\\ \\ x\cdot (a-x)=0\\ \\ x=0~~\text{ ou }~~x=a \left[(ax)^{1/2} \right ]^{\!2}=x^{2}\\ \\ ax=x^{2}\\ \\ ax-x^{2}=0\\ \\ x\cdot (a-x)=0\\ \\ x=0~~\text{ ou }~~x=a](https://tex.z-dn.net/?f=%5Cleft%5B%28ax%29%5E%7B1%2F2%7D+%5Cright+%5D%5E%7B%5C%212%7D%3Dx%5E%7B2%7D%5C%5C+%5C%5C+ax%3Dx%5E%7B2%7D%5C%5C+%5C%5C+ax-x%5E%7B2%7D%3D0%5C%5C+%5C%5C+x%5Ccdot+%28a-x%29%3D0%5C%5C+%5C%5C+x%3D0%7E%7E%5Ctext%7B+ou+%7D%7E%7Ex%3Da)
Para
temos ![y=a. y=a.](https://tex.z-dn.net/?f=y%3Da.)
Para
temos ![y=0. y=0.](https://tex.z-dn.net/?f=y%3D0.)
As curvas se intersectam nos pontos
e ![(a,\;0). (a,\;0).](https://tex.z-dn.net/?f=%28a%2C%5C%3B0%29.)
_____________________________
Como
e
aparecem envolvidos em raízes quadradas (elevados a
), então a região que desejamos calcular a área está no primeiro quadrante:
![x\ge 0~~\text{ e }~~y\ge 0. x\ge 0~~\text{ e }~~y\ge 0.](https://tex.z-dn.net/?f=x%5Cge+0%7E%7E%5Ctext%7B+e+%7D%7E%7Ey%5Cge+0.)
A área da região
é dada por
![\text{\'{A}rea}(D)=\displaystyle\iint_{D}{1\,dx\,dy}~~~~~~\mathbf{(iii)} \text{\'{A}rea}(D)=\displaystyle\iint_{D}{1\,dx\,dy}~~~~~~\mathbf{(iii)}](https://tex.z-dn.net/?f=%5Ctext%7B%5C%27%7BA%7Drea%7D%28D%29%3D%5Cdisplaystyle%5Ciint_%7BD%7D%7B1%5C%2Cdx%5C%2Cdy%7D%7E%7E%7E%7E%7E%7E%5Cmathbf%7B%28iii%29%7D)
_____________________________
Encontrando os limites de integração:
varia entre extremos fixos:
![0\le x\le a. 0\le x\le a.](https://tex.z-dn.net/?f=0%5Cle+x%5Cle+a.)
varia entre duas funções de ![x: x:](https://tex.z-dn.net/?f=x%3A)
(da curva até a reta)
Para saber qual é o limite superior e qual é o inferior de
basta resolvermos a inequação
![a+x-2(ax)^{1/2}~\square~a-x a+x-2(ax)^{1/2}~\square~a-x](https://tex.z-dn.net/?f=a%2Bx-2%28ax%29%5E%7B1%2F2%7D%7E%5Csquare%7Ea-x)
sendo![\square\in \{\ge\,;\;\le\}. \square\in \{\ge\,;\;\le\}.](https://tex.z-dn.net/?f=%5Csquare%5Cin+%5C%7B%5Cge%5C%2C%3B%5C%3B%5Cle%5C%7D.)
![\diagup\!\!\!\! a+x-2(ax)^{1/2}~\square~\diagup\!\!\!\! a-x\\ \\ \diagup\!\!\!\! 2x~\square~\diagup\!\!\!\! 2(ax)^{1/2}\\ \\ x~\square~(ax)^{1/2} \diagup\!\!\!\! a+x-2(ax)^{1/2}~\square~\diagup\!\!\!\! a-x\\ \\ \diagup\!\!\!\! 2x~\square~\diagup\!\!\!\! 2(ax)^{1/2}\\ \\ x~\square~(ax)^{1/2}](https://tex.z-dn.net/?f=%5Cdiagup%5C%21%5C%21%5C%21%5C%21+a%2Bx-2%28ax%29%5E%7B1%2F2%7D%7E%5Csquare%7E%5Cdiagup%5C%21%5C%21%5C%21%5C%21+a-x%5C%5C+%5C%5C+%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2x%7E%5Csquare%7E%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%28ax%29%5E%7B1%2F2%7D%5C%5C+%5C%5C+x%7E%5Csquare%7E%28ax%29%5E%7B1%2F2%7D)
Como
os dois membros da desigualde acima não são negativos. Portanto, se elevarmos os dois membros ao quadrado, o sentido da desigualdade é mantido:
![x^{2}~\square~ax\\ \\ x^{2}-ax~\square~0\\ \\ x\cdot (x-a)~\square~0 x^{2}~\square~ax\\ \\ x^{2}-ax~\square~0\\ \\ x\cdot (x-a)~\square~0](https://tex.z-dn.net/?f=x%5E%7B2%7D%7E%5Csquare%7Eax%5C%5C+%5C%5C+x%5E%7B2%7D-ax%7E%5Csquare%7E0%5C%5C+%5C%5C+x%5Ccdot+%28x-a%29%7E%5Csquare%7E0)
Como
temos que
![x\cdot (x-a)\le 0 x\cdot (x-a)\le 0](https://tex.z-dn.net/?f=x%5Ccdot+%28x-a%29%5Cle+0)
Portanto,
é ![\le. \le.](https://tex.z-dn.net/?f=%5Cle.)
Assim, temos que os limites de integração em
são
![a+x-2(ax)^{1/2}\le y\le a-x. a+x-2(ax)^{1/2}\le y\le a-x.](https://tex.z-dn.net/?f=a%2Bx-2%28ax%29%5E%7B1%2F2%7D%5Cle+y%5Cle+a-x.)
______________________________
Escrevendo as integrais iteradas:
![\text{\'{A}rea}(D)=\displaystyle\iint_{D}{1\,dx\,dy}\\ \\ \\ =\int\limits_{0}^{a}\int\limits_{\;a+x-2(ax)^{1/2}}^{a-x}{1\,dy\,dx}\\ \\ \\ =\int\limits_{0}^{a}{(y)|_{a+x-2(ax)^{1/2}}^{a-x}\,dx}\\ \\ \\ =\int\limits_{0}^{a}{\left[(a-x)-(a+x-2(ax)^{1/2}) \right ]\,dx}\\ \\ \\ =\int\limits_{0}^{a}{\left[\diagup\!\!\!\! a-x-\diagup\!\!\!\! a-x+2(ax)^{1/2} \right ]\,dx}\\ \\ \\ =\int\limits_{0}^{a}{\left[-2x+2(ax)^{1/2} \right ]\,dx}~~~~~~\mathbf{(iv)} \text{\'{A}rea}(D)=\displaystyle\iint_{D}{1\,dx\,dy}\\ \\ \\ =\int\limits_{0}^{a}\int\limits_{\;a+x-2(ax)^{1/2}}^{a-x}{1\,dy\,dx}\\ \\ \\ =\int\limits_{0}^{a}{(y)|_{a+x-2(ax)^{1/2}}^{a-x}\,dx}\\ \\ \\ =\int\limits_{0}^{a}{\left[(a-x)-(a+x-2(ax)^{1/2}) \right ]\,dx}\\ \\ \\ =\int\limits_{0}^{a}{\left[\diagup\!\!\!\! a-x-\diagup\!\!\!\! a-x+2(ax)^{1/2} \right ]\,dx}\\ \\ \\ =\int\limits_{0}^{a}{\left[-2x+2(ax)^{1/2} \right ]\,dx}~~~~~~\mathbf{(iv)}](https://tex.z-dn.net/?f=%5Ctext%7B%5C%27%7BA%7Drea%7D%28D%29%3D%5Cdisplaystyle%5Ciint_%7BD%7D%7B1%5C%2Cdx%5C%2Cdy%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cint%5Climits_%7B0%7D%5E%7Ba%7D%5Cint%5Climits_%7B%5C%3Ba%2Bx-2%28ax%29%5E%7B1%2F2%7D%7D%5E%7Ba-x%7D%7B1%5C%2Cdy%5C%2Cdx%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cint%5Climits_%7B0%7D%5E%7Ba%7D%7B%28y%29%7C_%7Ba%2Bx-2%28ax%29%5E%7B1%2F2%7D%7D%5E%7Ba-x%7D%5C%2Cdx%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cint%5Climits_%7B0%7D%5E%7Ba%7D%7B%5Cleft%5B%28a-x%29-%28a%2Bx-2%28ax%29%5E%7B1%2F2%7D%29+%5Cright+%5D%5C%2Cdx%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cint%5Climits_%7B0%7D%5E%7Ba%7D%7B%5Cleft%5B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+a-x-%5Cdiagup%5C%21%5C%21%5C%21%5C%21+a-x%2B2%28ax%29%5E%7B1%2F2%7D+%5Cright+%5D%5C%2Cdx%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cint%5Climits_%7B0%7D%5E%7Ba%7D%7B%5Cleft%5B-2x%2B2%28ax%29%5E%7B1%2F2%7D+%5Cright+%5D%5C%2Cdx%7D%7E%7E%7E%7E%7E%7E%5Cmathbf%7B%28iv%29%7D)
Façamos a seguinte mudança de variável:
![ax=u~\Rightarrow~a\,dx=du~\Rightarrow~\left\{ \begin{array}{l} dx=\dfrac{1}{a}\,du\\ \\ x=\dfrac{1}{a}\,u \end{array} \right. ax=u~\Rightarrow~a\,dx=du~\Rightarrow~\left\{ \begin{array}{l} dx=\dfrac{1}{a}\,du\\ \\ x=\dfrac{1}{a}\,u \end{array} \right.](https://tex.z-dn.net/?f=ax%3Du%7E%5CRightarrow%7Ea%5C%2Cdx%3Ddu%7E%5CRightarrow%7E%5Cleft%5C%7B+%5Cbegin%7Barray%7D%7Bl%7D+dx%3D%5Cdfrac%7B1%7D%7Ba%7D%5C%2Cdu%5C%5C+%5C%5C+x%3D%5Cdfrac%7B1%7D%7Ba%7D%5C%2Cu+%5Cend%7Barray%7D+%5Cright.)
Mudando os extremos de integração:
![\text{Quando }x=0~\Rightarrow~u=0\\ \\ \text{Quando }x=a~\Rightarrow~u=a^{2} \text{Quando }x=0~\Rightarrow~u=0\\ \\ \text{Quando }x=a~\Rightarrow~u=a^{2}](https://tex.z-dn.net/?f=%5Ctext%7BQuando+%7Dx%3D0%7E%5CRightarrow%7Eu%3D0%5C%5C+%5C%5C+%5Ctext%7BQuando+%7Dx%3Da%7E%5CRightarrow%7Eu%3Da%5E%7B2%7D)
Substituindo em
a integral fica
![=\displaystyle\int\limits_{0}^{a^{2}}{\left[-2\cdot \dfrac{1}{a}\,u+2u^{1/2} \right ]\cdot \dfrac{1}{a}\,du}\\ \\ \\ =\dfrac{1}{a}\int\limits_{0}^{a^{2}}{\left[-\dfrac{2}{a}\,u+2u^{1/2} \right ]du}\\ \\ \\ =\dfrac{1}{a}\cdot \left[-\dfrac{\diagup\!\!\!\! 2}{a}\cdot \dfrac{u^{2}}{\diagup\!\!\!\! 2}+2\cdot \dfrac{2}{3}\,u^{3/2} \right ]_{0}^{a^{2}}\\ \\ \\ =\dfrac{1}{a}\cdot \left[-\dfrac{u^{2}}{a}+\dfrac{4u^{3/2}}{3} \right ]_{0}^{a^{2}}\\ \\ \\ =\dfrac{1}{a}\cdot \left[-\dfrac{(a^{2})^{2}}{a}+\dfrac{4(a^{2})^{3/2}}{3} \right ]\\ \\ \\ =\dfrac{1}{a}\cdot \left[-\dfrac{a^{4}}{a}+\dfrac{4a^{3}}{3} \right ]\\ \\ \\ =\dfrac{1}{a}\cdot \left[-a^{3}+\dfrac{4a^{3}}{3} \right ] =\displaystyle\int\limits_{0}^{a^{2}}{\left[-2\cdot \dfrac{1}{a}\,u+2u^{1/2} \right ]\cdot \dfrac{1}{a}\,du}\\ \\ \\ =\dfrac{1}{a}\int\limits_{0}^{a^{2}}{\left[-\dfrac{2}{a}\,u+2u^{1/2} \right ]du}\\ \\ \\ =\dfrac{1}{a}\cdot \left[-\dfrac{\diagup\!\!\!\! 2}{a}\cdot \dfrac{u^{2}}{\diagup\!\!\!\! 2}+2\cdot \dfrac{2}{3}\,u^{3/2} \right ]_{0}^{a^{2}}\\ \\ \\ =\dfrac{1}{a}\cdot \left[-\dfrac{u^{2}}{a}+\dfrac{4u^{3/2}}{3} \right ]_{0}^{a^{2}}\\ \\ \\ =\dfrac{1}{a}\cdot \left[-\dfrac{(a^{2})^{2}}{a}+\dfrac{4(a^{2})^{3/2}}{3} \right ]\\ \\ \\ =\dfrac{1}{a}\cdot \left[-\dfrac{a^{4}}{a}+\dfrac{4a^{3}}{3} \right ]\\ \\ \\ =\dfrac{1}{a}\cdot \left[-a^{3}+\dfrac{4a^{3}}{3} \right ]](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%5Cint%5Climits_%7B0%7D%5E%7Ba%5E%7B2%7D%7D%7B%5Cleft%5B-2%5Ccdot+%5Cdfrac%7B1%7D%7Ba%7D%5C%2Cu%2B2u%5E%7B1%2F2%7D+%5Cright+%5D%5Ccdot+%5Cdfrac%7B1%7D%7Ba%7D%5C%2Cdu%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cdfrac%7B1%7D%7Ba%7D%5Cint%5Climits_%7B0%7D%5E%7Ba%5E%7B2%7D%7D%7B%5Cleft%5B-%5Cdfrac%7B2%7D%7Ba%7D%5C%2Cu%2B2u%5E%7B1%2F2%7D+%5Cright+%5Ddu%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cdfrac%7B1%7D%7Ba%7D%5Ccdot+%5Cleft%5B-%5Cdfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%7D%7Ba%7D%5Ccdot+%5Cdfrac%7Bu%5E%7B2%7D%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%7D%2B2%5Ccdot+%5Cdfrac%7B2%7D%7B3%7D%5C%2Cu%5E%7B3%2F2%7D+%5Cright+%5D_%7B0%7D%5E%7Ba%5E%7B2%7D%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cdfrac%7B1%7D%7Ba%7D%5Ccdot+%5Cleft%5B-%5Cdfrac%7Bu%5E%7B2%7D%7D%7Ba%7D%2B%5Cdfrac%7B4u%5E%7B3%2F2%7D%7D%7B3%7D+%5Cright+%5D_%7B0%7D%5E%7Ba%5E%7B2%7D%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cdfrac%7B1%7D%7Ba%7D%5Ccdot+%5Cleft%5B-%5Cdfrac%7B%28a%5E%7B2%7D%29%5E%7B2%7D%7D%7Ba%7D%2B%5Cdfrac%7B4%28a%5E%7B2%7D%29%5E%7B3%2F2%7D%7D%7B3%7D+%5Cright+%5D%5C%5C+%5C%5C+%5C%5C+%3D%5Cdfrac%7B1%7D%7Ba%7D%5Ccdot+%5Cleft%5B-%5Cdfrac%7Ba%5E%7B4%7D%7D%7Ba%7D%2B%5Cdfrac%7B4a%5E%7B3%7D%7D%7B3%7D+%5Cright+%5D%5C%5C+%5C%5C+%5C%5C+%3D%5Cdfrac%7B1%7D%7Ba%7D%5Ccdot+%5Cleft%5B-a%5E%7B3%7D%2B%5Cdfrac%7B4a%5E%7B3%7D%7D%7B3%7D+%5Cright+%5D)
![=\dfrac{1}{a}\cdot \left[-\dfrac{3a^{3}}{3}+\dfrac{4a^{3}}{3} \right ]\\ \\ \\ =\dfrac{1}{a}\cdot \left[\dfrac{-3a^{3}+4a^{3}}{3} \right ]\\ \\ \\ =\dfrac{1}{a}\cdot \dfrac{a^{3}}{3}\\ \\ \\ =\dfrac{a^{2}}{3}~\mathrm{u.a.} =\dfrac{1}{a}\cdot \left[-\dfrac{3a^{3}}{3}+\dfrac{4a^{3}}{3} \right ]\\ \\ \\ =\dfrac{1}{a}\cdot \left[\dfrac{-3a^{3}+4a^{3}}{3} \right ]\\ \\ \\ =\dfrac{1}{a}\cdot \dfrac{a^{3}}{3}\\ \\ \\ =\dfrac{a^{2}}{3}~\mathrm{u.a.}](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B1%7D%7Ba%7D%5Ccdot+%5Cleft%5B-%5Cdfrac%7B3a%5E%7B3%7D%7D%7B3%7D%2B%5Cdfrac%7B4a%5E%7B3%7D%7D%7B3%7D+%5Cright+%5D%5C%5C+%5C%5C+%5C%5C+%3D%5Cdfrac%7B1%7D%7Ba%7D%5Ccdot+%5Cleft%5B%5Cdfrac%7B-3a%5E%7B3%7D%2B4a%5E%7B3%7D%7D%7B3%7D+%5Cright+%5D%5C%5C+%5C%5C+%5C%5C+%3D%5Cdfrac%7B1%7D%7Ba%7D%5Ccdot+%5Cdfrac%7Ba%5E%7B3%7D%7D%7B3%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cdfrac%7Ba%5E%7B2%7D%7D%7B3%7D%7E%5Cmathrm%7Bu.a.%7D)
com
_____________________________
Encontrando os pontos de interseção entre as curvas:
Isolando
Elevando os dois lados ao quadrado, temos
Elevando os dois lados ao quadrado novamente, temos
Para
Para
As curvas se intersectam nos pontos
_____________________________
Como
A área da região
_____________________________
Encontrando os limites de integração:
(da curva até a reta)
Para saber qual é o limite superior e qual é o inferior de
sendo
Como
Como
Portanto,
Assim, temos que os limites de integração em
______________________________
Escrevendo as integrais iteradas:
Façamos a seguinte mudança de variável:
Mudando os extremos de integração:
Substituindo em
Lukyo:
Oi, tentei fazer mudança de coordenanas, mas achei que ficou muito complicado. Então, fiz na raça mesmo.. em coordenadas cartesianas.. hehe
Perguntas interessantes
Geografia,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Sociologia,
1 ano atrás
Física,
1 ano atrás
Geografia,
1 ano atrás