Estou em uma prova de variave me ajudem please e ∫baf(x)dx=144 e 3∫caf(x)dx=−1, qual o valor de ∫bcf(x)dx?
Soluções para a tarefa
Respondido por
0
Resposta:
Olá bom dia.
Pela propriedade da constante:
∫ K f(x)dx = K.∫(x)dx
Então:
∫baf(x)dx=144 => baf ∫f(x)dx = 144
3∫caf(x)dx=−1 => 3caf ∫f(x)dx = -1
baf/144 = 3caf/-1
432caf = -baf
432 = -baf/caf
432 = -b/c
Se
-b/c = 432
bc = x
∫bcf(x)dx = x
(-b/c)x = 432bc
x = 432bc (-c/b)
x = - 432c²
∫bcf(x)dx = -432c²
Perguntas interessantes
Filosofia,
8 meses atrás
Geografia,
8 meses atrás
Artes,
8 meses atrás
Geografia,
10 meses atrás
Biologia,
10 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás