Escreva um polinômio reduzido para representar a área laranja em cada figura
Anexos:
Soluções para a tarefa
Respondido por
21
A) Primeira vamos encontrar qual é o tamanho desse pedaço do canto inferior esquerdo:
Se a parte completa do topo mede x + 5 e esse pedaço da direita mede x -1, então esse canto inferior direito terá tamanho de x + 5 - (x - 1). Desenvolvendo essa subtração:
x + 5 - (x - 1)
x + 5 - x + 1
anulando x, ficaremos com 6, esse é o tamanho do pedaço inferior esquerdo.
Agora podemos definir as área de cada parte da figura:
Trecho esquerdo da figura:
6 . 3 = 18
Trecho direito da figura:
(x - 1) . x ou x² - x
A área total dessa figura será dada por:
x² - x + 18 ou x² - x +3(x + 5 - x + 1)
Infelizmente, não teve como fazer o exercício B, pois o número esquerdo da figura está cortado.
Se a parte completa do topo mede x + 5 e esse pedaço da direita mede x -1, então esse canto inferior direito terá tamanho de x + 5 - (x - 1). Desenvolvendo essa subtração:
x + 5 - (x - 1)
x + 5 - x + 1
anulando x, ficaremos com 6, esse é o tamanho do pedaço inferior esquerdo.
Agora podemos definir as área de cada parte da figura:
Trecho esquerdo da figura:
6 . 3 = 18
Trecho direito da figura:
(x - 1) . x ou x² - x
A área total dessa figura será dada por:
x² - x + 18 ou x² - x +3(x + 5 - x + 1)
Infelizmente, não teve como fazer o exercício B, pois o número esquerdo da figura está cortado.
kajisanovq7dv:
Corrigindo: o número do lado direito da figura é que está cortado.
Perguntas interessantes
Inglês,
10 meses atrás
Geografia,
10 meses atrás
Biologia,
10 meses atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás
História,
1 ano atrás