Matemática, perguntado por ismaelsoares8876, 6 meses atrás

Escreva os quatros termos anteriores e posteriores do termo igual a 5 de uma progressão aritmética de razão 4.​

Soluções para a tarefa

Respondido por edivarsantana
0

Entendemos como progressão aritmética (P.A.) uma sequência numérica que se comporta de forma linear. Após o primeiro termo, somamos um valor fixo denotado algebricamente por r. Para encontrar os próximos termos da sequência, sempre somamos r ao termo anterior, esse valor r é conhecido como razão de uma progressão aritmética.

A P.A. pode ser crescente, decrescente ou constante quando a razão for positiva, negativa ou nula, respectivamente. Além da classificação quanto ao comportamento, uma progressão pode ser classificada como finita ou infinita.

O estudo das progressões levou ao desenvolvimento de propriedades nessas sequências, há fórmulas específicas para o cálculo de um termo qualquer, conhecido como termo geral de uma P.A., e também para o cálculo da soma de todos os termos de uma progressão aritmética.

É muito comum trabalharmos com sequências numéricas, ainda que consigamos prever os próximos termos, nem sempre a sequência pode ser classificada como uma progressão aritmética. Para isso, é necessário que exista uma razão e que, com base no primeiro termo, os termos posteriores sejam construídos a partir do termo anterior mais a razão.

Exemplo:

(2, 5, 8, 11, 14, 17, 20, 23...)

Essa é uma sequência que pode ser classificada como progressão aritmética, pois a razão r = 3 e o primeiro termo é 2.

(1, 2, -2, 3, -3, 4, -4...)

Essa sequência não é uma progressão aritmética, por mais que ela tenha uma regularidade e a gente consiga prever os próximos termos, não há uma soma de uma razão que gere o próximo termo.

espero ter ajudado

Perguntas interessantes