escreva na forma trigonométrica z=2i
Soluções para a tarefa
Se um número complexo está escrito na forma
então
o módulo de é dado por
o argumento de é o ângulo de forma que
Uma vez encontrados o módulo e o argumento de a forma trigonométrica do número é
Para esta questão, temos
Então o módulo de é
Encontrando o argumento do número
Então, a forma trigonométrica de é
Resposta:
Sabemos que um número complexo possui forma geométrica igual a z = a + bi, onde a recebe a denominação de parte real e b parte imaginária de z. Por exemplo, para o número complexo z = 3 + 5i, temos a = 3 e b = 5 ou Re(z) = 3 e Im(z) = 5. Os números complexos também possuem uma forma trigonométrica ou polar, que será demonstrada com base no argumento de z (para z ≠ 0).
Considere o número complexo z = a + bi, em que z ≠ 0, dessa forma temos que: cosӨ = a/p e senӨ = b/p. Essa relações podem ser escritas de outra forma, acompanhe:
cosӨ = a/p → a = p*cosӨ
senӨ = b/p → b = p*senӨ
Vamos substituir os valores de a e b no complexo z = a + bi.
z = p*cosӨ + p*senӨi → z = p*( cosӨ + i*senӨ)
Essa forma trigonométrica é de grande utilidade nos cálculos envolvendo potenciações e radiciações.