Matemática, perguntado por cleidebb1394, 6 meses atrás

Escreva na forma trigonometria os seguintes números 3+4i÷3-3i

Soluções para a tarefa

Respondido por Skoy
18
  • Passando para a forma trigonometrica, temos que \large\displaystyle\text{$\begin{aligned} z= \frac{5}{3\sqrt{2} } (\cos \left(  98.13^o \right) + i\sin \left( 98.13^o \right) )\end{aligned}$}.

Primeiramente irei racionalizar os números complexos 3+4i÷3-3i.

\large\displaystyle\text{$\begin{aligned} \frac{3+4i}{3-3i}\cdot \frac{3+3i}{3+3i} \Leftrightarrow \end{aligned}$}

\large\displaystyle\text{$\begin{aligned} \frac{(3+4i)\cdot (3+3i)}{(3-3i)\cdot (3+3i)} \Leftrightarrow \end{aligned}$}

\large\displaystyle\text{$\begin{aligned} \frac{9 + 9i + 12i -12}{9 +9i -9i+9} \Leftrightarrow \end{aligned}$}

\large\displaystyle\text{$\begin{aligned} \frac{-3 }{18} +  \frac{21 }{18} i\Leftrightarrow \end{aligned}$}

\large\displaystyle\text{$\begin{aligned} \Leftrightarrow \underline{\boxed{\frac{-1 }{6} +  \frac{7 }{6} i}}\end{aligned}$}

Agora devemos aplicar na fórmula \large\displaystyle\text{$\begin{aligned} z= p(\cos \theta + i\sin \theta )\ ;\ p=\sqrt{a^2 + b^2} \end{aligned}$} . Logo:

\large\displaystyle\text{$\begin{aligned} z= p(\cos \theta + i\sin \theta )\ ;\ p=\sqrt{a^2 + b^2} \end{aligned}$}

\large\displaystyle\text{$\begin{aligned} z= p(\cos \theta + i\sin \theta )\ ;\ p=\sqrt{\left(-\frac{1}{6}  \right)^2 + \left( \frac{7}{6} \right)^2} \end{aligned}$}

\large\displaystyle\text{$\begin{aligned} z= p(\cos \theta + i\sin \theta )\ ;\ p=\sqrt{\left(\frac{1}{36}  \right) + \left( \frac{49}{36} \right)} \end{aligned}$}

\large\displaystyle\text{$\begin{aligned} z= p(\cos \theta + i\sin \theta )\ ;\ p=\sqrt{ \left( \frac{25}{18} \right)} \end{aligned}$}

\large\displaystyle\text{$\begin{aligned} z= p(\cos \theta + i\sin \theta )\ ;\ p=  \frac{5}{3\sqrt{2}} \end{aligned}$}

Para finalizar, devemos achar o argumento ( \theta ). Para isso devemos utilizar a seguinte fórmula:

\large\displaystyle\text{$\begin{aligned} \cos \theta = \frac{a}{p} \ ;\ \sin \theta = \frac{b}{p}\end{aligned}$}

  • Aplicando na sua questão:

\large\displaystyle\text{$\begin{aligned} \cos \theta = \frac{-\frac{1}{6} }{\frac{5}{3\sqrt{2}} } \ ;\ \sin \theta = \frac{\frac{7}{6}}{\frac{5}{3\sqrt{2}}}\end{aligned}$}

\large\displaystyle\text{$\begin{aligned} \cos \theta = -\frac{\sqrt{2}}{10} \ ;\ \sin \theta = \frac{7\sqrt{2}}{10} \end{aligned}$}

\large\displaystyle\text{$\begin{aligned} \underline{\boxed{\cos \theta =\frac{\sqrt{ 2}}{10} \ ;\ \sin \theta = \frac{7\sqrt{2} }{10}}} \end{aligned}$}

  • Ficando então:

\large\displaystyle\text{$\begin{aligned} z= p(\cos \theta + i\sin \theta )\end{aligned}$}

\large\displaystyle\text{$\begin{aligned} \therefore \boxed{\boxed{\green{z= \frac{5}{3\sqrt{2} } (\cos \left( 98.13^o \right) + i\sin \left( 98.13^o\right) )}}}\end{aligned}$}

Veja mais sobre:

Números complexos.

\blue{\square} brainly.com.br/tarefa/22693420

Anexos:

MuriloAnswersGD: eita ! parabéns primo explicação e uso do látex !
MuriloAnswersGD: ótima*...
Perguntas interessantes