Escreva a matriz A=(aij) do tipo 2x2 sabendo que aij =2i-3j e matriz B=
-1 0
2 3
Calcule a matriz Curricular=A.B
Soluções para a tarefa
Respondido por
2
Sabendo que a(ij)=2i-3j, ao substituir na matriz A temos:
![\left[\begin{array}{ccc}(2*1)-(3*1)&(2*2)-(3*1)\\(2*2)-(3*1)&(2*2)-(3*2)\end{array}\right] \left[\begin{array}{ccc}(2*1)-(3*1)&(2*2)-(3*1)\\(2*2)-(3*1)&(2*2)-(3*2)\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%282%2A1%29-%283%2A1%29%26amp%3B%282%2A2%29-%283%2A1%29%5C%5C%282%2A2%29-%283%2A1%29%26amp%3B%282%2A2%29-%283%2A2%29%5Cend%7Barray%7D%5Cright%5D+)
Calculando:
![\left[\begin{array}{ccc}-1&1\\1&-2\end{array}\right] \left[\begin{array}{ccc}-1&1\\1&-2\end{array}\right]](https://tex.z-dn.net/?f=%C2%A0%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%26amp%3B1%5C%5C1%26amp%3B-2%5Cend%7Barray%7D%5Cright%5D+)
Ao multiplicar A*B encontra-se a matriz:
![\left[\begin{array}{ccc}(-1*-1)+(1*2)&(-1*0)+(1*3)\\(1*-1)+(-2*2)&(1*2)+(-2*-3)\end{array}\right] \left[\begin{array}{ccc}(-1*-1)+(1*2)&(-1*0)+(1*3)\\(1*-1)+(-2*2)&(1*2)+(-2*-3)\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%28-1%2A-1%29%2B%281%2A2%29%26amp%3B%28-1%2A0%29%2B%281%2A3%29%5C%5C%281%2A-1%29%2B%28-2%2A2%29%26amp%3B%281%2A2%29%2B%28-2%2A-3%29%5Cend%7Barray%7D%5Cright%5D+)
Resposta:
A*B =![\left[\begin{array}{ccc}3&3\\-5&-3\end{array}\right] \left[\begin{array}{ccc}3&3\\-5&-3\end{array}\right]](https://tex.z-dn.net/?f=++%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26amp%3B3%5C%5C-5%26amp%3B-3%5Cend%7Barray%7D%5Cright%5D+)
Calculando:
Ao multiplicar A*B encontra-se a matriz:
Resposta:
A*B =
Respondido por
0
-1 -4 -1 0 = -1+2 0+3 = 1 3
1 -2 2 3 -1+2 0+3 1 3
1 -2 2 3 -1+2 0+3 1 3
Perguntas interessantes