Escreva a função afim f(x)= ax + b, sabendo que:
A) f(1)=5 e f(-3)= -7
B) f(-1)=7 e f(2)= 1
C) f(1)= 5 e f(2)= -4
Soluções para a tarefa
Respondido por
1
f(x)=ax+b
f(1)=5=a+b b=5-a
f(-3)=-7=-3a+b b=-7+3a
5-a=-7+3a
12=4a
a=3 b=2
A) f(x)=3x+2 , B) e C) mesma coisa
f(1)=5=a+b b=5-a
f(-3)=-7=-3a+b b=-7+3a
5-a=-7+3a
12=4a
a=3 b=2
A) f(x)=3x+2 , B) e C) mesma coisa
Respondido por
1
Escreva a função afim f(x)= ax + b, sabendo que:
função AFIM:
f(x) = ax + b
A) f(1)=5 e f(-3)= -7
f(1) = 5
F(x) = 5
x = 1
f(x) = ax + b ( basta SUBSTITUIR)
5 = a(1) + b
5 = 1a + b mesmo que
5 = a + b
f(-3) = - 7
f(x) = - 7
x = - 3 ( só substituir)
f(x) = ax + b
- 7 = a(-3) + b
- 7 = - 3a + b
assim
{ 5 = a + b
{ -7 = -3a + b
metodo de COMPARAÇÃO (isolar os (b))
5 = a + b
5 - a = b
outro
- 7 = - 3a + b
- 7 + 3a = b
IGUALAR os (b)
b = b
5 - a = - 7 + 3a ( isolar o (a))
5 - a - 3a = - 7
5 - 4a = - 7
- 4a = - 7 - 5
- 4a = - 12
a = - 12/-4
a = + 12/4
a = 3 ( achar o valor de (b)) PODE pegar UM dos dois
5 - a = b
5 - 3 = b
2 = b
b = 2
assim
a = 3
b = 2
f(x) = ax + b ( basta SUBSTITUIR (a) e o (b)
f(x) = 3x + 2 ( essa é a FUNÇÃO afim)
B) f(-1)=7 e f(2)= 1
f(-1) = 7
f(x) = 7
x = -1
f(x) = ax + b ( substitui os valores)
7 = a(-1) + b
7 = -1a + b mesmo que
7 = -a + b
f(2) = 1
f(x) = 1
x = 2
f(x) = ax + b
1 = a(2) + b
1 = 2a + b
JUNTA ambos
{ 7 = - a + b
{ 1 = 2a + b
metodo da COMPARAÇÃO (isolar os (b))
7 = - a + b
7 + a = b
outro
1 = 2a + b
1 - 2a = b
( IGUALAR OS (b))
b = b
7 + a = 1 - 2a ( isolar o (a))
7 + a + 2a = 1
7 + 3a = 1
3a = 1 - 7
3a = - 6
a = - 6/3
a = - 2 ( achar o valor de (b)) PEGAR qualquer um
7 + a = b
7 - 2 = b
5 = b
b = 5
assim
a = -2
b = 5
f(x) = ax + b ( substituir os valores de (a) e (b))
f(x) = -2x + 5 ( essa é a FUNÇÃO afim)
C) f(1)= 5 e f(2)= -4
f(1) = 5
f(x) = 5
x = 1
f(x) = ax + b instrução acima
5 = a(1) + b
5 = 1a + b mesmo que
5 = a + b
f(2) = - 4
f(x) = - 4
x = 2
f(x) = ax + b idem
-4 = a(2) + b
-4 = 2a + b
junta
{ 5 = a + b
{-4 = 2a + b
metodo da COMAPARAÇÃO (isolar os (b))
5 = a + b
5 - a = b
outro
-4 = 2a + b
- 4 - 2a = b
IGUALAR os (b))
b = b
5 - a = - 4 - 2a ( isoar o (a))
5 - a + 2a = - 4
5 + 1a = - 4
1a = - 4 - 9
1a = - 9
a = -9/1
a = - 9 ( achar o valor de (b)) idem
5 - a = b
5 -(-9) = b
5 + 9 = b
14 = b
b = 14
assim
a = - 9
b = 14
f(x) = ax + b
f(x) = -9x + 14 (função afim)
função AFIM:
f(x) = ax + b
A) f(1)=5 e f(-3)= -7
f(1) = 5
F(x) = 5
x = 1
f(x) = ax + b ( basta SUBSTITUIR)
5 = a(1) + b
5 = 1a + b mesmo que
5 = a + b
f(-3) = - 7
f(x) = - 7
x = - 3 ( só substituir)
f(x) = ax + b
- 7 = a(-3) + b
- 7 = - 3a + b
assim
{ 5 = a + b
{ -7 = -3a + b
metodo de COMPARAÇÃO (isolar os (b))
5 = a + b
5 - a = b
outro
- 7 = - 3a + b
- 7 + 3a = b
IGUALAR os (b)
b = b
5 - a = - 7 + 3a ( isolar o (a))
5 - a - 3a = - 7
5 - 4a = - 7
- 4a = - 7 - 5
- 4a = - 12
a = - 12/-4
a = + 12/4
a = 3 ( achar o valor de (b)) PODE pegar UM dos dois
5 - a = b
5 - 3 = b
2 = b
b = 2
assim
a = 3
b = 2
f(x) = ax + b ( basta SUBSTITUIR (a) e o (b)
f(x) = 3x + 2 ( essa é a FUNÇÃO afim)
B) f(-1)=7 e f(2)= 1
f(-1) = 7
f(x) = 7
x = -1
f(x) = ax + b ( substitui os valores)
7 = a(-1) + b
7 = -1a + b mesmo que
7 = -a + b
f(2) = 1
f(x) = 1
x = 2
f(x) = ax + b
1 = a(2) + b
1 = 2a + b
JUNTA ambos
{ 7 = - a + b
{ 1 = 2a + b
metodo da COMPARAÇÃO (isolar os (b))
7 = - a + b
7 + a = b
outro
1 = 2a + b
1 - 2a = b
( IGUALAR OS (b))
b = b
7 + a = 1 - 2a ( isolar o (a))
7 + a + 2a = 1
7 + 3a = 1
3a = 1 - 7
3a = - 6
a = - 6/3
a = - 2 ( achar o valor de (b)) PEGAR qualquer um
7 + a = b
7 - 2 = b
5 = b
b = 5
assim
a = -2
b = 5
f(x) = ax + b ( substituir os valores de (a) e (b))
f(x) = -2x + 5 ( essa é a FUNÇÃO afim)
C) f(1)= 5 e f(2)= -4
f(1) = 5
f(x) = 5
x = 1
f(x) = ax + b instrução acima
5 = a(1) + b
5 = 1a + b mesmo que
5 = a + b
f(2) = - 4
f(x) = - 4
x = 2
f(x) = ax + b idem
-4 = a(2) + b
-4 = 2a + b
junta
{ 5 = a + b
{-4 = 2a + b
metodo da COMAPARAÇÃO (isolar os (b))
5 = a + b
5 - a = b
outro
-4 = 2a + b
- 4 - 2a = b
IGUALAR os (b))
b = b
5 - a = - 4 - 2a ( isoar o (a))
5 - a + 2a = - 4
5 + 1a = - 4
1a = - 4 - 9
1a = - 9
a = -9/1
a = - 9 ( achar o valor de (b)) idem
5 - a = b
5 -(-9) = b
5 + 9 = b
14 = b
b = 14
assim
a = - 9
b = 14
f(x) = ax + b
f(x) = -9x + 14 (função afim)
Perguntas interessantes
Matemática,
8 meses atrás
Inglês,
8 meses atrás
Biologia,
8 meses atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
f(x) = 3x + 2