Matemática, perguntado por Gloogs, 1 ano atrás

Esboce o gráfico: f(x)= x²-8x+12

Soluções para a tarefa

Respondido por Lukyo
53
Segue esboço do gráfico em anexo.

f(x)=x^2-8x+12


\bullet\;\; Interseção com o eixo y:

Fazendo x=0\,,

f(x)=12

_____________________

\bullet\;\; Interseção com o eixo x:

Encontrando as raízes da equação:

f(x)=0\\\\ x^2-8x+12=0~~~\Rightarrow~~\left\{\! \begin{array}{l}a=1\\b=-8\\c=12 
\end{array} \right.\\\\\\ \Delta=b^2-4ac\\\\ \Delta=(-8)^2-4\cdot 1\cdot 12\\\\ \Delta=64-48\\\\ \Delta=16


x=\dfrac{-(-8)\pm
 \sqrt{16}}{2\cdot 1}\\\\\\ x=\dfrac{8\pm 4}{2}\\\\\\ 
\begin{array}{rcl} x_1=\dfrac{8-4}{2}&~\text{ e 
}~&x_2=\dfrac{8+4}{2}\\\\\\ x_1=\dfrac{4}{2}&~\text{ e 
}~&x_2=\dfrac{12}{2}\\\\\\ x_1=2&~\text{ e }~&x_2=6 
\end{array}

_____________________

\bullet\;\; Coordenadas do vértice:

\bullet\;\;x_{_V}=-\,\dfrac{b}{2a}\\\\\\
 x_{_V}=-\,\dfrac{(-8)}{2\cdot 1}\\\\\\ x_{_V}=\dfrac{8}{2}\\\\\\ 
\boxed{\begin{array}{c} x_{_V}=4 \end{array}}

\bullet\;\;y_{_V}=-\,\dfrac{\Delta}{4a}\\\\\\
 y_{_V}=-\,\dfrac{16}{4\cdot 1}\\\\\\ y_{_V}=-\,\dfrac{16}{4}\\\\\\ 
\boxed{\begin{array}{c} y_{_V}=-4 \end{array}}


Bons estudos! :-)

Anexos:
Perguntas interessantes