Esboce o gráfico da função: x²-1
Soluções para a tarefa
Respondido por
2
Pela fórmula de Báscara, temos
![\Delta = 0^{2} - 4 . 1 . -1 = 0 - 4. 1 . -1 = 4
\\\\
x' = \frac{-0 + \sqrt{4}}{2.1} = \frac{2}{2} = 1\\\\
x'' = \frac{-0 - \sqrt{4}}{2.1} = \frac{-2}{2} = -1 \Delta = 0^{2} - 4 . 1 . -1 = 0 - 4. 1 . -1 = 4
\\\\
x' = \frac{-0 + \sqrt{4}}{2.1} = \frac{2}{2} = 1\\\\
x'' = \frac{-0 - \sqrt{4}}{2.1} = \frac{-2}{2} = -1](https://tex.z-dn.net/?f=%5CDelta+%3D+0%5E%7B2%7D+-+4+.+1+.+-1++%3D+0+-+4.+1+.+-1+%3D+4%0A%5C%5C%5C%5C%0Ax%27+%3D+%5Cfrac%7B-0+%2B+%5Csqrt%7B4%7D%7D%7B2.1%7D+%3D+%5Cfrac%7B2%7D%7B2%7D+%3D+1%5C%5C%5C%5C%0Ax%27%27+%3D+%5Cfrac%7B-0+-+%5Csqrt%7B4%7D%7D%7B2.1%7D+%3D++%5Cfrac%7B-2%7D%7B2%7D+%3D+-1)
Coordenada do vértice:
![V = ( \frac{-b}{2a} , \frac{-\Delta}{4a} ) = ( \frac{0}{2.1}, \frac{4}{4.1} ) = (0,-1) V = ( \frac{-b}{2a} , \frac{-\Delta}{4a} ) = ( \frac{0}{2.1}, \frac{4}{4.1} ) = (0,-1)](https://tex.z-dn.net/?f=V+%3D+%28+%5Cfrac%7B-b%7D%7B2a%7D+%2C+%5Cfrac%7B-%5CDelta%7D%7B4a%7D+%29+%3D+%28+%5Cfrac%7B0%7D%7B2.1%7D%2C+%5Cfrac%7B4%7D%7B4.1%7D++%29+%3D+%280%2C-1%29)
Confira o gráfico anexo.
Coordenada do vértice:
Confira o gráfico anexo.
Anexos:
![](https://pt-static.z-dn.net/files/dd2/f92de1d9afa2429567723f8282d1ad89.png)
Perguntas interessantes