Equação exponecial
= (8/16)5^x esse  que aparece antes do 2 e 1 não fui eu que coloquei é um bug ou sei lá kk
raftelti:
É isso? [tex]\frac{2^{x+2}}{2^{x-1}}=(8/16)5^x[/tex]
Soluções para a tarefa
Respondido por
1
Olá novamente!
Vamos lá!
![\frac{2^{x+2}}{2^{x-1}}=(8/16)^{5x} \frac{2^{x+2}}{2^{x-1}}=(8/16)^{5x}](https://tex.z-dn.net/?f=%5Cfrac%7B2%5E%7Bx%2B2%7D%7D%7B2%5E%7Bx-1%7D%7D%3D%288%2F16%29%5E%7B5x%7D)
![{2^{x+2-(x-1)}=(8/16)^{5x} {2^{x+2-(x-1)}=(8/16)^{5x}](https://tex.z-dn.net/?f=%7B2%5E%7Bx%2B2-%28x-1%29%7D%3D%288%2F16%29%5E%7B5x%7D)
![{2^{x+2-x+1}=(8/16)^{5x} {2^{x+2-x+1}=(8/16)^{5x}](https://tex.z-dn.net/?f=%7B2%5E%7Bx%2B2-x%2B1%7D%3D%288%2F16%29%5E%7B5x%7D)
![{2^{3}=(8/16)^{5x} {2^{3}=(8/16)^{5x}](https://tex.z-dn.net/?f=%7B2%5E%7B3%7D%3D%288%2F16%29%5E%7B5x%7D)
![{2^{3}=(1/2)^{5x} {2^{3}=(1/2)^{5x}](https://tex.z-dn.net/?f=%7B2%5E%7B3%7D%3D%281%2F2%29%5E%7B5x%7D)
![{2^{3}=2^{-5x} {2^{3}=2^{-5x}](https://tex.z-dn.net/?f=%7B2%5E%7B3%7D%3D2%5E%7B-5x%7D)
![3=-5x 3=-5x](https://tex.z-dn.net/?f=3%3D-5x)
![x=\frac{3}{-5} x=\frac{3}{-5}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B3%7D%7B-5%7D)
Vamos lá!
Perguntas interessantes