equação de primeiro grau 1 com duas incognitas.
Soluções para a tarefa
x = –2
2 * (–2) + 5y = 10
–4 + 5y = 10
5y = 10 + 4
5y = 14
y = 14/5
x = –1
2 * (–1) + 5y = 10
–2 + 5y = 10
5y = 10 + 2
5y = 12
y = 12/5
x = 0
2 * 0 + 5y = 10
0 + 5y = 10
5y = 10
y = 10/5
y = 2
x = 1
2 * 1 + 5y = 10
2 + 5y = 10
5y = 10 – 2
5y = 8
y = 8/5 x = 2
2 * 2 + 5y = 10
4 + 5y = 10
5y = 10 – 4
5y = 6
y = 6/5
Resposta:As equações do 1º grau com duas incógnitas são representadas pela expressão ax + by = c, onde a e b são diferentes de 0 e c assume qualquer valor real.
Toda equação do 1º grau com uma incógnita é representada pela forma geral ax + b = c, com a, b e c pertencentes aos números reais, sendo a ≠ 0.
As equações do 1º grau com duas incógnitas são representadas pela expressão ax + by = c, com a ≠ 0, b ≠ 0 e c assumindo qualquer valor real. Nesse modelo de equação, os valores de x e y estão ligados através de uma relação de dependência. Observe exemplos de equações com duas incógnitas:
10x – 2y = 0
x – y = – 8
7x + y = 5
12x + 5y = – 10
50x – 6y = 32
8x + 11y = 12
Essa relação de dependência pode ser denominada de par ordenado (x, y) da equação, os valores de x dependem dos valores de y e vice versa. Atribuindo valores a qualquer uma das incógnitas descobrimos os valores correlacionados a elas. Por exemplo, na equação
3x + 7y = 5, vamos substituir o valor de y por 2:
3x + 7*2 = 5
3x + 14 = 5
3x = 5 – 14
3x = – 9
x = – 9 / 3
x = – 3
Temos que para y = 2, x = – 3, estabelecendo o par ordenado (–3, 2).