Matemática, perguntado por TiagoDaCostaBaum, 5 meses atrás

equação de 2° grau:

-3x² -2x +3 =0​

Soluções para a tarefa

Respondido por attard
1

\Large\mathsf\displaystyle{} -  {3x}^{2}  - 2x + 3 = 0 \\ \Large\mathsf\displaystyle{} {3x}^{2}  + 2x - 3 = 0 \\ \Large\mathsf\displaystyle{}\begin{cases}a = 3 \\ b = 2 \\ c =  - 3\end{cases} \\  \\ \Large\mathsf\displaystyle{}x =  \dfrac{ - 2 \pm \sqrt{ {2}^{2} - 4\cdot3\cdot\left( - 3\right) } }{2\cdot3}  \\\\ \\  \Large\mathsf\displaystyle{}x =  \dfrac{ - 2 \pm \sqrt{4 + 36} }{6}  \\\\ \\  \Large\mathsf\displaystyle{}x =  \dfrac{ - 2 \pm \sqrt{40} }{6}  \\\\  \\ \Large\mathsf\displaystyle{}x =  \dfrac{ - 2 \pm2 \sqrt{10} }{6}  \\\\ \\  \Large\mathsf\displaystyle{}x =  \dfrac{ - 2 + 2 \sqrt{10} }{6}  \\\\ \Large\mathsf\displaystyle{}x =  \dfrac{ - 2 - 2 \sqrt{10} }{6}  \\\\ \\  \Large\mathsf\displaystyle{}x =  \dfrac{ - 1 +  \sqrt{10} }{3}  \\  \\ \Large\mathsf\displaystyle{}x =  \frac{ - 1 -  \sqrt{10} }{3}

Solução:

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{  x_{1}   =  \frac{ - 1 -  \sqrt{10} }{3} }}}\end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{   x_{2} =  \frac{ - 1 +  \sqrt{10} }{3}    }}}\end{gathered}$}

\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{{ \red{Bons}}  \blue{\:Estudos}}}}\end{gathered}$}

Anexos:
Perguntas interessantes