Ensino superior- cálculo 4 ajuda pf
Encontre um número a tal que (x^2+y^2)dx + (axy + y4)dy=0 é exata e em seguida resolve-la
Resolva x'=4t^3√x. >=0 X(0)=1
Soluções para a tarefa
Respondido por
1
• Encontrar um número real
de forma que a EDO
![(x^2+y^2)dx+(axy+y^4)dy=0 (x^2+y^2)dx+(axy+y^4)dy=0](https://tex.z-dn.net/?f=%28x%5E2%2By%5E2%29dx%2B%28axy%2By%5E4%29dy%3D0)
seja exata.
Temos uma EDO escrita na forma
![P(x,\,y)dx+Q(x,\,y)dy=0 P(x,\,y)dx+Q(x,\,y)dy=0](https://tex.z-dn.net/?f=P%28x%2C%5C%2Cy%29dx%2BQ%28x%2C%5C%2Cy%29dy%3D0)
onde
![\left\{ \!\begin{array}{l} P(x,\,y)=x^2+y^2\\\\ Q(x,\,y)=axy+y^4 \end{array} \right. \left\{ \!\begin{array}{l} P(x,\,y)=x^2+y^2\\\\ Q(x,\,y)=axy+y^4 \end{array} \right.](https://tex.z-dn.net/?f=%5Cleft%5C%7B+%5C%21%5Cbegin%7Barray%7D%7Bl%7D+P%28x%2C%5C%2Cy%29%3Dx%5E2%2By%5E2%5C%5C%5C%5C+Q%28x%2C%5C%2Cy%29%3Daxy%2By%5E4+%5Cend%7Barray%7D+%5Cright.)
Para que a EDO seja exata, devemos ter
![\dfrac{\partial P}{\partial y}=\dfrac{\partial Q}{\partial x}\\\\\\ \dfrac{\partial}{\partial y}(x^2+y^2)=\dfrac{\partial}{\partial x}(axy+y^4)\\\\\\ 2y=ay\\\\ 2y-ay=0\\\\ y\cdot (2-a)=0 \dfrac{\partial P}{\partial y}=\dfrac{\partial Q}{\partial x}\\\\\\ \dfrac{\partial}{\partial y}(x^2+y^2)=\dfrac{\partial}{\partial x}(axy+y^4)\\\\\\ 2y=ay\\\\ 2y-ay=0\\\\ y\cdot (2-a)=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial+P%7D%7B%5Cpartial+y%7D%3D%5Cdfrac%7B%5Cpartial+Q%7D%7B%5Cpartial+x%7D%5C%5C%5C%5C%5C%5C+%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial+y%7D%28x%5E2%2By%5E2%29%3D%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial+x%7D%28axy%2By%5E4%29%5C%5C%5C%5C%5C%5C+2y%3Day%5C%5C%5C%5C+2y-ay%3D0%5C%5C%5C%5C+y%5Ccdot+%282-a%29%3D0)
Vemos que
satisfaz a igualdade acima.
Resolvendo a EDO resultante, já sabendo que ela é exata:
![(x^2+y^2)dx+(2xy+y^4)dy=0 (x^2+y^2)dx+(2xy+y^4)dy=0](https://tex.z-dn.net/?f=%28x%5E2%2By%5E2%29dx%2B%282xy%2By%5E4%29dy%3D0)
![\left\{ \!\begin{array}{l} P(x,\,y)=x^2+y^2\\\\ Q(x,\,y)=<br />2xy+y^4 \end{array} \right. \left\{ \!\begin{array}{l} P(x,\,y)=x^2+y^2\\\\ Q(x,\,y)=<br />2xy+y^4 \end{array} \right.](https://tex.z-dn.net/?f=%5Cleft%5C%7B+%5C%21%5Cbegin%7Barray%7D%7Bl%7D+P%28x%2C%5C%2Cy%29%3Dx%5E2%2By%5E2%5C%5C%5C%5C+Q%28x%2C%5C%2Cy%29%3D%3Cbr+%2F%3E2xy%2By%5E4+%5Cend%7Barray%7D+%5Cright.)
Existe uma função
tal que
![\left\{ \!\begin{array}{l} \dfrac{\partial \varphi}{\partial x}=x^2+y^2\\\\ \dfrac{\partial \varphi}{\partial y}=2xy+y^4 \end{array} \right. \left\{ \!\begin{array}{l} \dfrac{\partial \varphi}{\partial x}=x^2+y^2\\\\ \dfrac{\partial \varphi}{\partial y}=2xy+y^4 \end{array} \right.](https://tex.z-dn.net/?f=%5Cleft%5C%7B+%5C%21%5Cbegin%7Barray%7D%7Bl%7D+%5Cdfrac%7B%5Cpartial+%5Cvarphi%7D%7B%5Cpartial+x%7D%3Dx%5E2%2By%5E2%5C%5C%5C%5C+%5Cdfrac%7B%5Cpartial+%5Cvarphi%7D%7B%5Cpartial+y%7D%3D2xy%2By%5E4+%5Cend%7Barray%7D+%5Cright.)
Primitivando em
ambos os lados da equação
temos
![\varphi(x,\,y)=\dfrac{x^3}{3}+xy^2+g(y)~~~~~~\mathbf{(iii)} \varphi(x,\,y)=\dfrac{x^3}{3}+xy^2+g(y)~~~~~~\mathbf{(iii)}](https://tex.z-dn.net/?f=%5Cvarphi%28x%2C%5C%2Cy%29%3D%5Cdfrac%7Bx%5E3%7D%7B3%7D%2Bxy%5E2%2Bg%28y%29%7E%7E%7E%7E%7E%7E%5Cmathbf%7B%28iii%29%7D)
onde
é uma função apenas de ![y. y.](https://tex.z-dn.net/?f=y.)
Derivando os dois lados de
em relação a
temos
![\dfrac{\partial \varphi}{\partial y}=2xy+g'(y)\\\\\\ 2xy+y^4=2xy+g'(y)\\\\ g'(y)=y^4\\\\ g(y)=\dfrac{y^5}{5} \dfrac{\partial \varphi}{\partial y}=2xy+g'(y)\\\\\\ 2xy+y^4=2xy+g'(y)\\\\ g'(y)=y^4\\\\ g(y)=\dfrac{y^5}{5}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial+%5Cvarphi%7D%7B%5Cpartial+y%7D%3D2xy%2Bg%27%28y%29%5C%5C%5C%5C%5C%5C+2xy%2By%5E4%3D2xy%2Bg%27%28y%29%5C%5C%5C%5C+g%27%28y%29%3Dy%5E4%5C%5C%5C%5C+g%28y%29%3D%5Cdfrac%7By%5E5%7D%7B5%7D)
Portanto,
![\varphi(x,\,y)=\dfrac{x^3}{3}+xy^2+\dfrac{y^5}{5} \varphi(x,\,y)=\dfrac{x^3}{3}+xy^2+\dfrac{y^5}{5}](https://tex.z-dn.net/?f=%5Cvarphi%28x%2C%5C%2Cy%29%3D%5Cdfrac%7Bx%5E3%7D%7B3%7D%2Bxy%5E2%2B%5Cdfrac%7By%5E5%7D%7B5%7D)
e a solução geral da EDO é dada implicitamente por
![\varphi(x,\,y)=C_1\\\\ \dfrac{x^3}{3}+xy^2+\dfrac{y^5}{5}=C_1\\\\ 15\cdot\left(\dfrac{x^3}{3}+xy^2+\dfrac{y^5}{5} \right )=15C_1\\\\\\ \boxed{\begin{array}{c}5x^3+15xy^2+3y^5=C \end{array}}~~~~~~(\text{onde }C=15C_1) \varphi(x,\,y)=C_1\\\\ \dfrac{x^3}{3}+xy^2+\dfrac{y^5}{5}=C_1\\\\ 15\cdot\left(\dfrac{x^3}{3}+xy^2+\dfrac{y^5}{5} \right )=15C_1\\\\\\ \boxed{\begin{array}{c}5x^3+15xy^2+3y^5=C \end{array}}~~~~~~(\text{onde }C=15C_1)](https://tex.z-dn.net/?f=%5Cvarphi%28x%2C%5C%2Cy%29%3DC_1%5C%5C%5C%5C+%5Cdfrac%7Bx%5E3%7D%7B3%7D%2Bxy%5E2%2B%5Cdfrac%7By%5E5%7D%7B5%7D%3DC_1%5C%5C%5C%5C+15%5Ccdot%5Cleft%28%5Cdfrac%7Bx%5E3%7D%7B3%7D%2Bxy%5E2%2B%5Cdfrac%7By%5E5%7D%7B5%7D+%5Cright+%29%3D15C_1%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D5x%5E3%2B15xy%5E2%2B3y%5E5%3DC+%5Cend%7Barray%7D%7D%7E%7E%7E%7E%7E%7E%28%5Ctext%7Bonde+%7DC%3D15C_1%29)
_________
• Resolver a EDO (esta é de variáveis separáveis)
![x'(t)=4t^3\sqrt{x}\\\\ \dfrac{dx}{dt}=4t^3\sqrt{x}\\\\\\ \dfrac{dx}{\sqrt{x}}=4t^3\,dt\\\\\\ x^{-1/2}\,dx=4t^3\,dt x'(t)=4t^3\sqrt{x}\\\\ \dfrac{dx}{dt}=4t^3\sqrt{x}\\\\\\ \dfrac{dx}{\sqrt{x}}=4t^3\,dt\\\\\\ x^{-1/2}\,dx=4t^3\,dt](https://tex.z-dn.net/?f=x%27%28t%29%3D4t%5E3%5Csqrt%7Bx%7D%5C%5C%5C%5C+%5Cdfrac%7Bdx%7D%7Bdt%7D%3D4t%5E3%5Csqrt%7Bx%7D%5C%5C%5C%5C%5C%5C+%5Cdfrac%7Bdx%7D%7B%5Csqrt%7Bx%7D%7D%3D4t%5E3%5C%2Cdt%5C%5C%5C%5C%5C%5C+x%5E%7B-1%2F2%7D%5C%2Cdx%3D4t%5E3%5C%2Cdt)
Tomando as primitivas dos dois lados,
![\displaystyle\int\!x^{-1/2}\,dx=\int\!4t^3\,dt\\\\\\ \dfrac{x^{-1/2+1}}{-\,\frac{1}{2}+1}=t^4+C_1\\\\\\ \dfrac{x^{1/2}}{\frac{1}{2}}=t^4+C_1\\\\\\ 2\sqrt{x}=t^4+C_1\\\\\\ \sqrt{x}=\dfrac{t^4}{2}+\dfrac{C_1}{2}\\\\\\ \sqrt{x}=\dfrac{t^4}{2}+C \displaystyle\int\!x^{-1/2}\,dx=\int\!4t^3\,dt\\\\\\ \dfrac{x^{-1/2+1}}{-\,\frac{1}{2}+1}=t^4+C_1\\\\\\ \dfrac{x^{1/2}}{\frac{1}{2}}=t^4+C_1\\\\\\ 2\sqrt{x}=t^4+C_1\\\\\\ \sqrt{x}=\dfrac{t^4}{2}+\dfrac{C_1}{2}\\\\\\ \sqrt{x}=\dfrac{t^4}{2}+C](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint%5C%21x%5E%7B-1%2F2%7D%5C%2Cdx%3D%5Cint%5C%214t%5E3%5C%2Cdt%5C%5C%5C%5C%5C%5C+%5Cdfrac%7Bx%5E%7B-1%2F2%2B1%7D%7D%7B-%5C%2C%5Cfrac%7B1%7D%7B2%7D%2B1%7D%3Dt%5E4%2BC_1%5C%5C%5C%5C%5C%5C+%5Cdfrac%7Bx%5E%7B1%2F2%7D%7D%7B%5Cfrac%7B1%7D%7B2%7D%7D%3Dt%5E4%2BC_1%5C%5C%5C%5C%5C%5C+2%5Csqrt%7Bx%7D%3Dt%5E4%2BC_1%5C%5C%5C%5C%5C%5C+%5Csqrt%7Bx%7D%3D%5Cdfrac%7Bt%5E4%7D%7B2%7D%2B%5Cdfrac%7BC_1%7D%7B2%7D%5C%5C%5C%5C%5C%5C+%5Csqrt%7Bx%7D%3D%5Cdfrac%7Bt%5E4%7D%7B2%7D%2BC)
Para encontrar a constante
aplicamos a condição dada:
![x(0)=1\\\\ \sqrt{x(0)}=\sqrt{1}\\\\ \dfrac{0^4}{2}+C=\sqrt{1}\\\\\\ \boxed{\begin{array}{c} C=1 \end{array}} x(0)=1\\\\ \sqrt{x(0)}=\sqrt{1}\\\\ \dfrac{0^4}{2}+C=\sqrt{1}\\\\\\ \boxed{\begin{array}{c} C=1 \end{array}}](https://tex.z-dn.net/?f=x%280%29%3D1%5C%5C%5C%5C+%5Csqrt%7Bx%280%29%7D%3D%5Csqrt%7B1%7D%5C%5C%5C%5C+%5Cdfrac%7B0%5E4%7D%7B2%7D%2BC%3D%5Csqrt%7B1%7D%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D+C%3D1+%5Cend%7Barray%7D%7D)
Portanto, a solução procurada satisfaz
![\sqrt{x}=\dfrac{t^4}{2}+1\\\\\\ \boxed{\begin{array}{c}x(t)=\left(\dfrac{t^4}{2}+1 \right )^{\!\!2} \end{array}} \sqrt{x}=\dfrac{t^4}{2}+1\\\\\\ \boxed{\begin{array}{c}x(t)=\left(\dfrac{t^4}{2}+1 \right )^{\!\!2} \end{array}}](https://tex.z-dn.net/?f=%5Csqrt%7Bx%7D%3D%5Cdfrac%7Bt%5E4%7D%7B2%7D%2B1%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7Dx%28t%29%3D%5Cleft%28%5Cdfrac%7Bt%5E4%7D%7B2%7D%2B1+%5Cright+%29%5E%7B%5C%21%5C%212%7D+%5Cend%7Barray%7D%7D)
Bons estudos! :-)
seja exata.
Temos uma EDO escrita na forma
onde
Para que a EDO seja exata, devemos ter
Vemos que
Resolvendo a EDO resultante, já sabendo que ela é exata:
Existe uma função
Primitivando em
onde
Derivando os dois lados de
Portanto,
e a solução geral da EDO é dada implicitamente por
_________
• Resolver a EDO (esta é de variáveis separáveis)
Tomando as primitivas dos dois lados,
Para encontrar a constante
Portanto, a solução procurada satisfaz
Bons estudos! :-)
Perguntas interessantes
Geografia,
1 ano atrás
Artes,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás