ensino superior ajuda com esses exercicios ?
Anexos:
![](https://pt-static.z-dn.net/files/d52/3eb514aeb39eb29990b51d26238aaf20.png)
Soluções para a tarefa
Respondido por
1
Questão 1:
![\theta(t)=3-2t^3+t \theta(t)=3-2t^3+t](https://tex.z-dn.net/?f=%5Ctheta%28t%29%3D3-2t%5E3%2Bt)
Velocidade angular instantânea:
![\omega(t)=\dfrac{d\theta}{dt}\,(t)\\\\\\ \omega(t)=\dfrac{d}{dt}\,(3-2t^3+t)\\\\\\ \omega(t)=-6t^2+1 \omega(t)=\dfrac{d\theta}{dt}\,(t)\\\\\\ \omega(t)=\dfrac{d}{dt}\,(3-2t^3+t)\\\\\\ \omega(t)=-6t^2+1](https://tex.z-dn.net/?f=%5Comega%28t%29%3D%5Cdfrac%7Bd%5Ctheta%7D%7Bdt%7D%5C%2C%28t%29%5C%5C%5C%5C%5C%5C+%5Comega%28t%29%3D%5Cdfrac%7Bd%7D%7Bdt%7D%5C%2C%283-2t%5E3%2Bt%29%5C%5C%5C%5C%5C%5C+%5Comega%28t%29%3D-6t%5E2%2B1)
Aceleração angular instantânea:
![\alpha(t)=\dfrac{d\omega}{dt}\,(t)\\\\\\ \alpha(t)=\dfrac{d}{dt}\,(-6t^2+1)\\\\\\ \alpha(t)=-12t \alpha(t)=\dfrac{d\omega}{dt}\,(t)\\\\\\ \alpha(t)=\dfrac{d}{dt}\,(-6t^2+1)\\\\\\ \alpha(t)=-12t](https://tex.z-dn.net/?f=%5Calpha%28t%29%3D%5Cdfrac%7Bd%5Comega%7D%7Bdt%7D%5C%2C%28t%29%5C%5C%5C%5C%5C%5C+%5Calpha%28t%29%3D%5Cdfrac%7Bd%7D%7Bdt%7D%5C%2C%28-6t%5E2%2B1%29%5C%5C%5C%5C%5C%5C+%5Calpha%28t%29%3D-12t)
(a)![\theta(1)=3-2\cdot 1^3+1 \theta(1)=3-2\cdot 1^3+1](https://tex.z-dn.net/?f=%5Ctheta%281%29%3D3-2%5Ccdot+1%5E3%2B1)
![\theta(1)=3-2+1\\\\ \boxed{\begin{array}{c}\theta(1)=2\mathrm{~rad} \end{array}} \theta(1)=3-2+1\\\\ \boxed{\begin{array}{c}\theta(1)=2\mathrm{~rad} \end{array}}](https://tex.z-dn.net/?f=%5Ctheta%281%29%3D3-2%2B1%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Ctheta%281%29%3D2%5Cmathrm%7B%7Erad%7D+%5Cend%7Barray%7D%7D)
(b)![\omega(1)=-6\cdot 1^2+1 \omega(1)=-6\cdot 1^2+1](https://tex.z-dn.net/?f=%5Comega%281%29%3D-6%5Ccdot+1%5E2%2B1)
![\omega(1)=-6\cdot 1^2+1\\\\ \omega(1)=-6+1\\\\ \boxed{\begin{array}{c}\omega(1)=-5\mathrm{~rad/s} \end{array}} \omega(1)=-6\cdot 1^2+1\\\\ \omega(1)=-6+1\\\\ \boxed{\begin{array}{c}\omega(1)=-5\mathrm{~rad/s} \end{array}}](https://tex.z-dn.net/?f=%5Comega%281%29%3D-6%5Ccdot+1%5E2%2B1%5C%5C%5C%5C+%5Comega%281%29%3D-6%2B1%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Comega%281%29%3D-5%5Cmathrm%7B%7Erad%2Fs%7D+%5Cend%7Barray%7D%7D)
(c)![\omega(3)=-6\cdot 3^2+1 \omega(3)=-6\cdot 3^2+1](https://tex.z-dn.net/?f=%5Comega%283%29%3D-6%5Ccdot+3%5E2%2B1)
![\omega(3)=-54+1\\\\ \boxed{\begin{array}{c}\omega(3)=-53\mathrm{~rad/s} \end{array}} \omega(3)=-54+1\\\\ \boxed{\begin{array}{c}\omega(3)=-53\mathrm{~rad/s} \end{array}}](https://tex.z-dn.net/?f=%5Comega%283%29%3D-54%2B1%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Comega%283%29%3D-53%5Cmathrm%7B%7Erad%2Fs%7D+%5Cend%7Barray%7D%7D)
(d)![\alpha(6)=-12\cdot 6 \alpha(6)=-12\cdot 6](https://tex.z-dn.net/?f=%5Calpha%286%29%3D-12%5Ccdot+6)
![\boxed{\alpha(6)=\begin{array}{c}-72\mathrm{~rad/s^2} \end{array}} \boxed{\alpha(6)=\begin{array}{c}-72\mathrm{~rad/s^2} \end{array}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Calpha%286%29%3D%5Cbegin%7Barray%7D%7Bc%7D-72%5Cmathrm%7B%7Erad%2Fs%5E2%7D+%5Cend%7Barray%7D%7D)
A aceleração angular não é constante, pois ela depende do instante![t. t.](https://tex.z-dn.net/?f=t.)
____________________
Questão 2:
![\theta(t)=2t-2t^2+t^4 \theta(t)=2t-2t^2+t^4](https://tex.z-dn.net/?f=%5Ctheta%28t%29%3D2t-2t%5E2%2Bt%5E4)
![\omega(t)=\dfrac{d\theta}{dt}\,(t)\\\\\\ \omega(t)=\dfrac{d}{dt}\,(2t-2t^2+t^4)\\\\\\ \omega(t)=2-4t+4t^3 \omega(t)=\dfrac{d\theta}{dt}\,(t)\\\\\\ \omega(t)=\dfrac{d}{dt}\,(2t-2t^2+t^4)\\\\\\ \omega(t)=2-4t+4t^3](https://tex.z-dn.net/?f=%5Comega%28t%29%3D%5Cdfrac%7Bd%5Ctheta%7D%7Bdt%7D%5C%2C%28t%29%5C%5C%5C%5C%5C%5C+%5Comega%28t%29%3D%5Cdfrac%7Bd%7D%7Bdt%7D%5C%2C%282t-2t%5E2%2Bt%5E4%29%5C%5C%5C%5C%5C%5C+%5Comega%28t%29%3D2-4t%2B4t%5E3)
![\alpha(t)=\dfrac{d\omega}{dt}\,(t)\\\\\\ \alpha(t)=\dfrac{d}{dt}\,(2-4t+4t^3)\\\\\\ \alpha(t)=-4+12t^2 \alpha(t)=\dfrac{d\omega}{dt}\,(t)\\\\\\ \alpha(t)=\dfrac{d}{dt}\,(2-4t+4t^3)\\\\\\ \alpha(t)=-4+12t^2](https://tex.z-dn.net/?f=%5Calpha%28t%29%3D%5Cdfrac%7Bd%5Comega%7D%7Bdt%7D%5C%2C%28t%29%5C%5C%5C%5C%5C%5C+%5Calpha%28t%29%3D%5Cdfrac%7Bd%7D%7Bdt%7D%5C%2C%282-4t%2B4t%5E3%29%5C%5C%5C%5C%5C%5C+%5Calpha%28t%29%3D-4%2B12t%5E2)
(a)![\omega(1)=2-4\cdot 1+4\cdot 1^3 \omega(1)=2-4\cdot 1+4\cdot 1^3](https://tex.z-dn.net/?f=%5Comega%281%29%3D2-4%5Ccdot+1%2B4%5Ccdot+1%5E3)
![\omega(1)=2-4+4\\\\ \boxed{\begin{array}{c} \omega(1)=2\mathrm{~rad/s} \end{array}} \omega(1)=2-4+4\\\\ \boxed{\begin{array}{c} \omega(1)=2\mathrm{~rad/s} \end{array}}](https://tex.z-dn.net/?f=%5Comega%281%29%3D2-4%2B4%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D+%5Comega%281%29%3D2%5Cmathrm%7B%7Erad%2Fs%7D+%5Cend%7Barray%7D%7D)
(b)![\omega(3)=2-4\cdot 3+4\cdot 3^3 \omega(3)=2-4\cdot 3+4\cdot 3^3](https://tex.z-dn.net/?f=%5Comega%283%29%3D2-4%5Ccdot+3%2B4%5Ccdot+3%5E3)
![\omega(3)=2-4\cdot 3+4\cdot 3^3\\\\ \omega(3)=2-12+108\\\\ \boxed{\begin{array}{c} \omega(3)=98\mathrm{~rad/s} \end{array}} \omega(3)=2-4\cdot 3+4\cdot 3^3\\\\ \omega(3)=2-12+108\\\\ \boxed{\begin{array}{c} \omega(3)=98\mathrm{~rad/s} \end{array}}](https://tex.z-dn.net/?f=%5Comega%283%29%3D2-4%5Ccdot+3%2B4%5Ccdot+3%5E3%5C%5C%5C%5C+%5Comega%283%29%3D2-12%2B108%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D+%5Comega%283%29%3D98%5Cmathrm%7B%7Erad%2Fs%7D+%5Cend%7Barray%7D%7D)
(c) Aceleração angular média no intervalo:
![\overline{\alpha}_{1\to 3}=\dfrac{\omega(3)-\omega(1)}{3-1}\\\\\\ \overline{\alpha}_{1\to 3}=\dfrac{98-2}{2}\\\\\\ \overline{\alpha}_{1\to 3}=\dfrac{96}{2}\\\\\\ \boxed{\begin{array}{c} \overline{\alpha}_{1\to 3}=48\mathrm{~rad/s^2} \end{array}} \overline{\alpha}_{1\to 3}=\dfrac{\omega(3)-\omega(1)}{3-1}\\\\\\ \overline{\alpha}_{1\to 3}=\dfrac{98-2}{2}\\\\\\ \overline{\alpha}_{1\to 3}=\dfrac{96}{2}\\\\\\ \boxed{\begin{array}{c} \overline{\alpha}_{1\to 3}=48\mathrm{~rad/s^2} \end{array}}](https://tex.z-dn.net/?f=%5Coverline%7B%5Calpha%7D_%7B1%5Cto+3%7D%3D%5Cdfrac%7B%5Comega%283%29-%5Comega%281%29%7D%7B3-1%7D%5C%5C%5C%5C%5C%5C+%5Coverline%7B%5Calpha%7D_%7B1%5Cto+3%7D%3D%5Cdfrac%7B98-2%7D%7B2%7D%5C%5C%5C%5C%5C%5C+%5Coverline%7B%5Calpha%7D_%7B1%5Cto+3%7D%3D%5Cdfrac%7B96%7D%7B2%7D%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D+%5Coverline%7B%5Calpha%7D_%7B1%5Cto+3%7D%3D48%5Cmathrm%7B%7Erad%2Fs%5E2%7D+%5Cend%7Barray%7D%7D)
(d) Aceleração angular inicial:
![\alpha(1)=-4+12\cdot 1^2\\\\ \alpha(1)=-4+12\\\\ \boxed{\begin{array}{c}\alpha(1)=8\mathrm{~rad/s^2} \end{array}} \alpha(1)=-4+12\cdot 1^2\\\\ \alpha(1)=-4+12\\\\ \boxed{\begin{array}{c}\alpha(1)=8\mathrm{~rad/s^2} \end{array}}](https://tex.z-dn.net/?f=%5Calpha%281%29%3D-4%2B12%5Ccdot+1%5E2%5C%5C%5C%5C+%5Calpha%281%29%3D-4%2B12%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Calpha%281%29%3D8%5Cmathrm%7B%7Erad%2Fs%5E2%7D+%5Cend%7Barray%7D%7D)
Aceleração angular final:
![\alpha(3)=-4+12\cdot 3^2\\\\ \alpha(3)=-4+108\\\\ \boxed{\begin{array}{c}\alpha(3)=104\mathrm{~rad/s^2} \end{array}} \alpha(3)=-4+12\cdot 3^2\\\\ \alpha(3)=-4+108\\\\ \boxed{\begin{array}{c}\alpha(3)=104\mathrm{~rad/s^2} \end{array}}](https://tex.z-dn.net/?f=%5Calpha%283%29%3D-4%2B12%5Ccdot+3%5E2%5C%5C%5C%5C+%5Calpha%283%29%3D-4%2B108%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Calpha%283%29%3D104%5Cmathrm%7B%7Erad%2Fs%5E2%7D+%5Cend%7Barray%7D%7D)
____________________
Questão 3:
Velocidade angular inicial:![\omega(0)=10\mathrm{~rad/s} \omega(0)=10\mathrm{~rad/s}](https://tex.z-dn.net/?f=%5Comega%280%29%3D10%5Cmathrm%7B%7Erad%2Fs%7D)
Aceleração angular constante:![\alpha=-2\mathrm{~rad/s^2} \alpha=-2\mathrm{~rad/s^2}](https://tex.z-dn.net/?f=%5Calpha%3D-2%5Cmathrm%7B%7Erad%2Fs%5E2%7D)
Velocidade angular em função do tempo:
![\omega(t)=\omega(0)+\alpha t\\\\ \boxed{\begin{array}{c} \omega(t)=10-2t \end{array}} \omega(t)=\omega(0)+\alpha t\\\\ \boxed{\begin{array}{c} \omega(t)=10-2t \end{array}}](https://tex.z-dn.net/?f=%5Comega%28t%29%3D%5Comega%280%29%2B%5Calpha+t%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D+%5Comega%28t%29%3D10-2t+%5Cend%7Barray%7D%7D)
(a) Encontrar o instante em que a velocidade angular se anula:
![\omega(t)=0\\\\ 10-2t=0\\\\ 2t=10\\\\ \boxed{\begin{array}{c}t=5\mathrm{~s} \end{array}} \omega(t)=0\\\\ 10-2t=0\\\\ 2t=10\\\\ \boxed{\begin{array}{c}t=5\mathrm{~s} \end{array}}](https://tex.z-dn.net/?f=%5Comega%28t%29%3D0%5C%5C%5C%5C+10-2t%3D0%5C%5C%5C%5C+2t%3D10%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7Dt%3D5%5Cmathrm%7B%7Es%7D+%5Cend%7Barray%7D%7D)
(b) Deslocamento angular dado pela fórmula de Torricelli:
![\omega^2(t_{f})-\omega^2(t_{i})=2\alpha\cdot \Delta \theta\\\\\\ \Delta \theta=\dfrac{\omega^2(t_{f})-\omega^2(t_{i})}{2\alpha}\\\\\\ \Delta \theta=\dfrac{\omega^2(5)-\omega^2(0)}{2\alpha}\\\\\\ \Delta \theta=\dfrac{0^2-10^2}{2\cdot (-2)}\\\\\\ \Delta \theta=\dfrac{-100}{-4}\\\\\\ \boxed{\begin{array}{c}\Delta \theta=25\mathrm{~rad} \end{array}} \omega^2(t_{f})-\omega^2(t_{i})=2\alpha\cdot \Delta \theta\\\\\\ \Delta \theta=\dfrac{\omega^2(t_{f})-\omega^2(t_{i})}{2\alpha}\\\\\\ \Delta \theta=\dfrac{\omega^2(5)-\omega^2(0)}{2\alpha}\\\\\\ \Delta \theta=\dfrac{0^2-10^2}{2\cdot (-2)}\\\\\\ \Delta \theta=\dfrac{-100}{-4}\\\\\\ \boxed{\begin{array}{c}\Delta \theta=25\mathrm{~rad} \end{array}}](https://tex.z-dn.net/?f=%5Comega%5E2%28t_%7Bf%7D%29-%5Comega%5E2%28t_%7Bi%7D%29%3D2%5Calpha%5Ccdot+%5CDelta+%5Ctheta%5C%5C%5C%5C%5C%5C+%5CDelta+%5Ctheta%3D%5Cdfrac%7B%5Comega%5E2%28t_%7Bf%7D%29-%5Comega%5E2%28t_%7Bi%7D%29%7D%7B2%5Calpha%7D%5C%5C%5C%5C%5C%5C+%5CDelta+%5Ctheta%3D%5Cdfrac%7B%5Comega%5E2%285%29-%5Comega%5E2%280%29%7D%7B2%5Calpha%7D%5C%5C%5C%5C%5C%5C+%5CDelta+%5Ctheta%3D%5Cdfrac%7B0%5E2-10%5E2%7D%7B2%5Ccdot+%28-2%29%7D%5C%5C%5C%5C%5C%5C+%5CDelta+%5Ctheta%3D%5Cdfrac%7B-100%7D%7B-4%7D%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5CDelta+%5Ctheta%3D25%5Cmathrm%7B%7Erad%7D+%5Cend%7Barray%7D%7D)
(este é o deslocamento do tambor até ele parar)
Velocidade angular instantânea:
Aceleração angular instantânea:
(a)
(b)
(c)
(d)
A aceleração angular não é constante, pois ela depende do instante
____________________
Questão 2:
(a)
(b)
(c) Aceleração angular média no intervalo:
(d) Aceleração angular inicial:
Aceleração angular final:
____________________
Questão 3:
Velocidade angular inicial:
Aceleração angular constante:
Velocidade angular em função do tempo:
(a) Encontrar o instante em que a velocidade angular se anula:
(b) Deslocamento angular dado pela fórmula de Torricelli:
(este é o deslocamento do tambor até ele parar)
Perguntas interessantes