Encontre os valores de A, B e C nas expressões:
Anexos:
Soluções para a tarefa
Respondido por
67
Bom dia
cos(2π/3) = cos(120) = -1/2
sen(4π/3) = sen(240) = -√3/2
sen(2π/3) = sen(120) = √3/2
cos(4π/3) = cos(240) = -1/2
A = (1/2 + √3/2)/(√3/2 + 1/2) = 1
sen(7π/4) = sen(315) = -√2/2
cos(5π/4) = cos(225) = -√2/2
cos(3π/4) = cos(135) = -√2/2
sen(3π/4) = sen(135) = √2/2
B = (-√2/2 -√2/2)/(-√2/2 -√2/2) = 1
cos(2π/3) = cos(120) = -1/2
sen(4π/3) = sen(240) = -√3/2
sen(2π/3) = sen(120) = √3/2
cos(4π/3) = cos(240) = -1/2
A = (1/2 + √3/2)/(√3/2 + 1/2) = 1
sen(7π/4) = sen(315) = -√2/2
cos(5π/4) = cos(225) = -√2/2
cos(3π/4) = cos(135) = -√2/2
sen(3π/4) = sen(135) = √2/2
B = (-√2/2 -√2/2)/(-√2/2 -√2/2) = 1
Perguntas interessantes