Matemática, perguntado por AGATHA13FREITAS, 1 ano atrás

Encontre o valor de x e y nos triângulos retangulos

Anexos:

Soluções para a tarefa

Respondido por lizzyl
3

Olá, vamos lá :)

Para o primeiro triângulo:

Sabemos que sen45°=cos45°= √2/2

A questão já nos deu o valor do cateto adjacente, uma das relações do triângulo diz: cosa= cateto adjacente/hipotenusa

Então, nesse triangulo: a hipotenusa é y e o nosso cateto adjacente é 8√2

Assim:

Cos45= 8√2/y

√2/2=8√2/y

y= 16

Outra relação do triângulo retângulo diz que sena= cateto oposto/ hipotenusa.

Sabemos que o cateto oposto é x e a hipotenusa é y= 16.

Sendo assim:

sen45°= x/y

√2/2 = x/16

x= 8√2

Para o segundo triângulo, usaremos o mesmo raciocínio.

O "a" é a nossa hipotenusa, "b" o cateto oposto e "c"o cateto adjacente.

A questão nos deu que a=2, b= √3 e c=1

Então, disso:

senx= c/a

senx= 1/2

Cosx= b/a

cosx= √3/2

Sabemos que o ângulo que corresponde a esse senx e cosx é o de 30°. Logo, x=30°.

Para descobrir o y usaremos a soma dos ângulos internos do triângulo, cuja a soma é igual a 180°.

y+x+90=180

y+30+90=180

y= 180-120

y= 60°


AGATHA13FREITAS: Obrigada
Perguntas interessantes