encontre o valor de x e y: 2x+3y=12. x+2y=4
Soluções para a tarefa
Respondido por
1
2x +3y = 12
x + 2y = 4 (-2)
2x + 3y = 12 (I)
-2x - 4y = -8
-----------------
-y = 4 (-1)
y = -4 (II)
substituindo (II) em (I)
2x + 3y = 12
2x + 3.(-4) = 12
2x - 12 = 12
2x = 12 + 12
2x = 24
x = 24/2
x = 12
*multiplicou a segunda equação por -2 para que pudesse eliminar o x, ficando apenas o y onde podemos encontrar seu valor que foi de 4 mas o y não pode ficar negativo por isso multiplicou por (-1) para que ele ficasse positivo tendo como valor -4.... depois substituindo esse valor na primeira equação pode-se encontrar o valor de x que foi 12...
*é preciso isolar os valores ficando as letras x e y de um lado da igualdade e do outro lado os números...
*para isso o que está somando passa para o outro lado da igualdade subtraindo, o que esta subtraindo passa para o outro lado somando, o que esta multiplicando passa para o outro lado dividindo e o que está dividindo passa para o outro lado multiplicando...
espero ter ajudado... bons estudos!!
x + 2y = 4 (-2)
2x + 3y = 12 (I)
-2x - 4y = -8
-----------------
-y = 4 (-1)
y = -4 (II)
substituindo (II) em (I)
2x + 3y = 12
2x + 3.(-4) = 12
2x - 12 = 12
2x = 12 + 12
2x = 24
x = 24/2
x = 12
*multiplicou a segunda equação por -2 para que pudesse eliminar o x, ficando apenas o y onde podemos encontrar seu valor que foi de 4 mas o y não pode ficar negativo por isso multiplicou por (-1) para que ele ficasse positivo tendo como valor -4.... depois substituindo esse valor na primeira equação pode-se encontrar o valor de x que foi 12...
*é preciso isolar os valores ficando as letras x e y de um lado da igualdade e do outro lado os números...
*para isso o que está somando passa para o outro lado da igualdade subtraindo, o que esta subtraindo passa para o outro lado somando, o que esta multiplicando passa para o outro lado dividindo e o que está dividindo passa para o outro lado multiplicando...
espero ter ajudado... bons estudos!!
monteirodaiane97:
nossa muito boa a explicação. Valeu..
Perguntas interessantes
Geografia,
9 meses atrás
Ed. Física,
9 meses atrás
Matemática,
9 meses atrás
Filosofia,
1 ano atrás
Matemática,
1 ano atrás
Administração,
1 ano atrás
História,
1 ano atrás