Matemática, perguntado por victoroliveirapadus7, 9 meses atrás

Encontre o valor de a em f(x)=x+a/x+1 de maneira que f′(1)=1.

Soluções para a tarefa

Respondido por lucascreis17
1

f(x) = ax + b ⇒

f(-1) = 1 ⇒

f(-1) = a . (-1) + b ⇒

1 = – a + b

f(1) = 2 ⇒

f(1) = a . 1 + b ⇒

2 = a + b ⇒

Fazendo um sistema de equações, temos:

função

Vamos isolar a na primeira equação:

– a + b = 1 ⇒

a = b – 1

Substituindo a na segunda equação, temos:

a + b = 2 ⇒

(b – 1) + b = 2 ⇒

2b – 1 = 2 ⇒

2b = 2 + 1 ⇒

b = 3/2

Vamos substituir b na primeira equação:

– a + b = 1 ⇒

– a + 3/2 = 1 ⇒

– a = 1 – 3/2 ⇒

– a = – 1/2 ⇒

a = 1/2

Então temos que a função será f(x) = 1/2 . x + 3/2.

Portanto, o valor de f(5) = 1/2 . 5 + 3/2 = 5/2 + 3/2 = 8/2 = 4


lucascreis17: ta ai
victoroliveirapadus7: então eu posso dizer que o valor de A é 4 ?
lucascreis17: si
Perguntas interessantes