Matemática, perguntado por lucas532328, 11 meses atrás

Encontre
dy/dx
derivando implicitamente:
xy +  {x}^{2}  {y}^{3}  =  \sin(xy)  +  { {ye}^{x} }^{2}

Soluções para a tarefa

Respondido por CyberKirito
0

\mathsf{xy + {x}^{2} {y}^{3} = sen(xy) + { {ye}^{x} }^{2}}

\mathsf{y+x\dfrac{dy}{dx}+2xy^3+x^2.3y^2\dfrac{dy}{dx}=cos(xy)(y+x\dfrac{dy}{dx})+\dfrac{dy}{dx}e^{x^2}+y.e^{x^2}.2x}

\mathsf{y+x\dfrac{dy}{dx}+2xy^3+3x^2y^2\dfrac{dy}{dx} =ycos(xy)+xcos(xy)\dfrac{dy}{dx}+\dfrac{dy}{dx}e^{x^2}+2xye^{x^2}}

\mathsf{x\dfrac{dy}{dx}+3x^2y^2\dfrac{dy}{dx} -xcos(xy)\dfrac{dy}{dx} -\dfrac{dy}{dx}e^{x^2}=ycos(xy)+3xye^{x^2}-y-2xy^3}

\mathsf{\dfrac{dy}{dx}(x+3x^2y^2-xcos(xy)-e^{x^2})=ycos(xy) +3xye^{x^2}-y-2xy^3}

\mathsf{\dfrac{dy}{dx}=\dfrac{ycos(xy)+3xye^{x^2}-y-2xy^3}{x+3x^2y^2-xcos(xy)-e^{x^2}}}

Perguntas interessantes