Matemática, perguntado por reisgreisgl, 10 meses atrás

Encontre cada valor das expressões algébricas
Me ajudaaa

Anexos:

Soluções para a tarefa

Respondido por CyberKirito
2

Caso tenha problemas para visualizar a resposta experimente abrir pelo navegador https://brainly.com.br/tarefa/33746128?answering=true&answeringSource=feedPublic%2FhomePage%2F1

===============================================================

\tt{a)}~\sf{\sqrt{b^2-4ac}\Bigg|_{a=2,b=0,c=-2}=\sqrt{0^2-4\cdot2\cdot(-2)}=\sqrt{16}=4}\\\tt{b)}~\sf{\sqrt{b^2-4ac}\Bigg|_{a=3,b=10,c=3}=\sqrt{10^2-4\cdot3\cdot3}=\sqrt{100-36}=\sqrt{64}=8}\\\tt{c)}~\sf{\sqrt{b^2-4ac}\Bigg|_{a=2,b=14,c=0}=\sqrt{14^2-4\cdot2\cdot0}=\sqrt{196}=14}\\\tt{d)}~\sf{s+vt-\dfrac{at^2}{2}\Bigg|_{s=3~v=-4~t=5~a=8}=3-4\cdot5-\dfrac{\diagup\!\!\!8\cdot5^2}{\diagup\!\!\!2}}\\\sf{s+vt-\dfrac{at^2}{2}\Bigg|_{s=3~v=-4~t=5~a=8}=3-20-4\cdot100=3-20-400=-417}

Respondido por Makaveli1996
0

Oie, Td Bom?!

A.

 =  \sqrt{b {}^{2}  - 4ac}

 =  \sqrt{0 {}^{2}  - 4 \: . \: 2 \: . \: ( - 2)}

 =  \sqrt{0  + 16}

 =  \sqrt{16}

 = 4

B.

 =  \sqrt{b {}^{2}  -4 ac}

 =  \sqrt{10 {}^{2}  - 4 \: . \: 3 \: . \: 3}

 =  \sqrt{100 - 36}

 =  \sqrt{64}

 = 8

C.

 =  \sqrt{b {}^{2}  - 4ac}

 =  \sqrt{14 {}^{2}  - 4 \: . \: 2 \: . \: 0}

 =  \sqrt{14 {}^{2}  - 0}

 =  \sqrt{14 {}^{2} }

 = 14

D.

 = s + vt -  \frac{at {}^{2} }{2}

 = 3 + ( - 4) \: . \: 5 -  \frac{8 \: . \: 5 {}^{2} }{2}

 = 3 + ( - 4) \: . \: 5 - 4 \: . \: 5 {}^{2}

 = 3 - 20 - 4 \: . \: 5 {}^{2}

 = 3 - 20 - 4 \: . \: 25

 = 3 - 20 - 100

 = 3 - 120

 =  - 117

Att. Makaveli1996

Perguntas interessantes