encontre as soluçoes da equação (x^3-1)=0
Soluções para a tarefa
Respondido por
0
Veja que uma solução óbvia é x=1
Mas sendo a equação de terceiro grau temos que pesquisar as possíveis raízes complexas.
Para isso dividimos x³ -1 por x-1 (Conforme o Teorema do Resto)
Vamos utilizar o Dispositivo de Briot-Rufini
1 1 0 0 -1
---------------------------------
1 1 1 0
Logo as outras raízes provêm da equação x² + x + 1 =0
Utilizando as fórmulas de Bhaskara logo chegamos a:
Δ = 1² - 4.1.1
Δ = -3
![x=\frac{-1\pm \sqrt{-3}}{2}=\frac{-1 \pm i\sqrt3}{2} x=\frac{-1\pm \sqrt{-3}}{2}=\frac{-1 \pm i\sqrt3}{2}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-1%5Cpm+%5Csqrt%7B-3%7D%7D%7B2%7D%3D%5Cfrac%7B-1+%5Cpm+i%5Csqrt3%7D%7B2%7D)
que são as outras duas soluções da equação
Mas sendo a equação de terceiro grau temos que pesquisar as possíveis raízes complexas.
Para isso dividimos x³ -1 por x-1 (Conforme o Teorema do Resto)
Vamos utilizar o Dispositivo de Briot-Rufini
1 1 0 0 -1
---------------------------------
1 1 1 0
Logo as outras raízes provêm da equação x² + x + 1 =0
Utilizando as fórmulas de Bhaskara logo chegamos a:
Δ = 1² - 4.1.1
Δ = -3
que são as outras duas soluções da equação
Perguntas interessantes
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Ed. Física,
1 ano atrás
Matemática,
1 ano atrás