Matemática, perguntado por gui22608, 10 meses atrás

Encontre as coordenadas dos focos a elipise de equacao x2/64 + y2/44 = 1
Ajudem Prf ce poderam​

Soluções para a tarefa

Respondido por sandragiraldo2829
0

Resposta:

equacao do elipse :

~~~~~~~~~~~~~~~~~

X^2/36 + Y^2/100 = 1

1er paso devemos lembrar a formula da equacao do elipse da seguinte manera e X^2/a^2 + y^2/b^2 = 1 isso quando os focos estiverem sobre o eixo " x " e y^2/a^2 + X^2/b^2 = 1 quando os focos estiverem sobre eixo " y ".

2do paso no caso acima da equacao do elipse,notamos que o eixo maior esta sobre o eixo " y " :

vertices :

~~~~~~~~

y^2 = 100

y = \/100

y = + 10 e y' = - 10

Coordenadas:

~~~~~~~~~~~~~

A (0,10)

A' (0,- 10)

Vertices :

~~~~~~~~~

a^2 = 36

a = \/36

a = + 6 e a' = - 6

Coordenadas :

~~~~~~~~~~~~~

B (6,0)

B' (- 6,0)

3er paso para a elipse temos as seguinte relacao para encontrar os focos com a formula de Teorema de Pitagoras :

a^2 = b^2 + c^2

(10)^2 = (6)^2 + c^2

100 = 36 + c^2

c^2 + 36 = 100

c^2 = 100 - 36

c^2 = 64

c = \/64

c = + 8 e c = - 8

Focos :

~~~~~~~

F (8,0)

F' (-8,0)

Explicação passo-a-passo:

Perguntas interessantes