Matemática, perguntado por meajudempfvr1239, 8 meses atrás

Encontre a matriz inversa

Anexos:

Soluções para a tarefa

Respondido por niltonjunior20oss764
2

\boxed{A^{-1}=\dfrac{1}{\det{(A)}}\bigg[\text{adj}{(A)}\bigg]}

\boxed{\text{adj}(A)=[A_{ij}]^t}\ \to\ \text{Transposta da matriz dos cofatores de A.}

\boxed{A_{ij}=(-1)^{i+j}|M_{ij}|}\ \to\ \text{Matriz dos cofatores de A.}

A matriz A é:

A=\left[\begin{array}{ccc}2&0&1\\6&0&2\\4&2&-1\end{array}\right]

O determinante de A será:

\det{(A)}=1(6)(2)-2(2)(2)=12-8\ \therefore\ \boxed{\det{(A)}=4}

A matriz dos cofatores de A será:

a_{11}=(-1)^{1+1}|M_{11}|=\left|\begin{array}{cc}0&2\\2&-1\end{array}\right|\ \therefore\ a_{11}=-4

a_{12}=(-1)^{1+2}|M_{12}|=-\left|\begin{array}{cc}6&2\\4&-1\end{array}\right|\ \therefore\ a_{12}=14

a_{13}=(-1)^{1+3}|M_{13}|=\left|\begin{array}{cc}6&0\\4&2\end{array}\right|\ \therefore\ a_{13}=12

a_{21}=(-1)^{2+1}|M_{21}|=-\left|\begin{array}{cc}0&1\\2&-1\end{array}\right|\ \therefore\ a_{21}=2

a_{22}=(-1)^{2+2}|M_{22}|=\left|\begin{array}{cc}2&4\\1&-1\end{array}\right|\ \therefore\ a_{22}=-6

a_{23}=(-1)^{2+3}|M_{23}|=-\left|\begin{array}{cc}2&0\\4&2\end{array}\right|\ \therefore\ a_{23}=-4

a_{31}=(-1)^{3+1}|M_{31}|=\left|\begin{array}{cc}0&1\\0&2\end{array}\right|\ \therefore\ a_{31}=0

a_{32}=(-1)^{3+2}|M_{32}|=-\left|\begin{array}{cc}2&1\\6&2\end{array}\right|\ \therefore\ a_{32}=2

a_{33}=(-1)^{3+3}|M_{33}|=\left|\begin{array}{cc}2&0\\6&0\end{array}\right|\ \therefore\ a_{33}=0

A_{ij}=\left[\begin{array}{ccc}-4&14&12\\2&-6&-4\\0&2&0\end{array}\right]

A adjunta de A será:

\text{adj}(A)=[A_{ij}]^t\ \therefore\ \text{adj}(A)=\left[\begin{array}{ccc}-4&2&0\\14&-6&2\\12&-4&0\end{array}\right]

Dessa forma, a matriz inversa de A será:

A^{-1}=\dfrac{1}{4}\left[\begin{array}{ccc}-4&2&0\\14&-6&2\\12&-4&0\end{array}\right]\ \therefore\ \boxed{A^{-1}=\left[\begin{array}{ccc}-1&\frac{1}{2}&0\\\frac{7}{2}&-\frac{3}{2}&\frac{1}{2}\\3&-1&0\end{array}\right]}


meajudempfvr1239: muito obrigada :)
Perguntas interessantes