Encontre a função quadrática cujo gráfico passa pelos pontos: A (0,1), B (-1,-2) e C (-2,-7).
a) y = - x² + 2 x + 1
b) y = - 3x² + x + 1
c) y = - 2x² + 2 x + 1
d) y = - 4x² + 3 x + 1
Soluções para a tarefa
Resposta:
Explicação passo-a-passo:
A função quadrática, também chamada de função polinomial de 2º grau, é uma função representada pela seguinte expressão:
f(x) = ax2 + bx + c
Onde a, b e c são números reais e a ≠ 0.
Exemplo:
f(x) = 2x2 + 3x + 5,
sendo,
a = 2
b = 3
c = 5
Nesse caso, o polinômio da função quadrática é de grau 2, pois é o maior expoente da variável.
Como resolver uma função quadrática?
Confira abaixo o passo-a-passo por meio um exemplo de resolução da função quadrática:
Exemplo
Determine a, b e c na função quadrática dada por: f(x) = ax2 + bx + c, sendo:
f (-1) = 8
f (0) = 4
f (2) = 2
Primeiramente, vamos substituir o x pelos valores de cada função e assim teremos:
f (-1) = 8
a (-1)2 + b (–1) + c = 8
a - b + c = 8 (equação I)
f (0) = 4
a . 02 + b . 0 + c = 4
c = 4 (equação II)
f (2) = 2
a . 22 + b . 2 + c = 2
4a + 2b + c = 2 (equação III)
Pela segunda função f (0) = 4, já temos o valor de c = 4.
Assim, vamos substituir o valor obtido para c nas equações I e III para determinar as outras incógnitas (a e b):
(Equação I)
a - b + 4 = 8
a - b = 4
a = b + 4
Já que temos a equação de a pela Equação I, vamos substituir na III para determinar o valor de b:
(Equação III)
4a + 2b + 4 = 2
4a + 2b = - 2
4 (b + 4) + 2b = - 2
4b + 16 + 2b = - 2
6b = - 18
b = - 3
Por fim, para encontrar o valor de a substituímos os valores de b e c que já foram encontrados. Logo:
(Equação I)
a - b + c = 8
a - (- 3) + 4 = 8
a = - 3 + 4
a = 1
Sendo assim, os coeficientes da função quadrática dada são:
a = 1
b = - 3
c = 4
espero ter ajudado