Matemática, perguntado por isabellavecentp6qgvi, 1 ano atrás


Encontre a fração geratriz de cada dizima períodica a seguir


a) 0,454545
b)0,22222
C) 3,868686
d)5,171717


Urgente respondam pelo amor de Deus

Soluções para a tarefa

Respondido por 12eAurielly1
2
Boa tarde Isabella,

a)
0,454545 = x . (10)

4,545454 = 10x . (10)

100x = 45,454545

100x - x = 45,454545 - 0,454545

99x = 45

x =
 \frac{45}{99}
=
 \frac{5}{11}

b)
0,222 = x . (10)

2,222 = 10x

10x - x = 2,222 - 0,222

9x = 2

x =
 \frac{2}{9}

c)
3,868686 = x . (100)

100x -x = 386,868686 - 3,868686

99x = 386

x=
 \frac{383}{99}

d)
5,171717 = x . (100)

100x = 517,171717

100x - x = 517,171717 - 5,171717

99x = 512

x =
 \frac{512}{99}







Perguntas interessantes